論文の概要: Deep Learning for Text Style Transfer: A Survey
- arxiv url: http://arxiv.org/abs/2011.00416v5
- Date: Thu, 16 Dec 2021 22:20:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 22:45:52.450894
- Title: Deep Learning for Text Style Transfer: A Survey
- Title(参考訳): テキストスタイル転送のためのディープラーニング: 調査
- Authors: Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, Rada Mihalcea
- Abstract要約: テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
- 参考スコア(独自算出の注目度): 71.8870854396927
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text style transfer is an important task in natural language generation,
which aims to control certain attributes in the generated text, such as
politeness, emotion, humor, and many others. It has a long history in the field
of natural language processing, and recently has re-gained significant
attention thanks to the promising performance brought by deep neural models. In
this paper, we present a systematic survey of the research on neural text style
transfer, spanning over 100 representative articles since the first neural text
style transfer work in 2017. We discuss the task formulation, existing datasets
and subtasks, evaluation, as well as the rich methodologies in the presence of
parallel and non-parallel data. We also provide discussions on a variety of
important topics regarding the future development of this task. Our curated
paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_Survey
- Abstract(参考訳): テキストスタイル転送は自然言語生成において重要なタスクであり、丁寧さ、感情、ユーモアなど、生成したテキストの特定の属性を制御することを目的としている。
自然言語処理の分野では長い歴史があり、ディープニューラルモデルによってもたらされる有望なパフォーマンスのおかげで、近年は大きな注目を集めている。
本稿では,2017年の第1回ニューラルテキスト・スタイル・トランスファー作業から100以上の代表的な論文を対象とした,ニューラルテキスト・スタイル・トランスファーの研究に関する体系的調査を行う。
並列および非並列データが存在する場合、タスクの定式化、既存のデータセットとサブタスクの評価、リッチな方法論について論じる。
また,この課題の今後の展開について,様々な重要な話題について議論する。
キュレートされたペーパーリストはhttps://github.com/zhijing-jin/Text_Style_Transfer_Surveyにある。
関連論文リスト
- Automatic and Human-AI Interactive Text Generation [27.05024520190722]
本チュートリアルは、最先端の自然言語生成研究の概要を提供する。
テキストからテキストへの生成タスクは、セマンティック一貫性とターゲット言語スタイルの観点からより制約される。
論文 参考訳(メタデータ) (2023-10-05T20:26:15Z) - Don't lose the message while paraphrasing: A study on content preserving
style transfer [61.38460184163704]
スタイル伝達研究の現実的な応用には,コンテンツ保存が不可欠である。
形式性伝達領域の例において、様々なスタイル転送モデルを比較する。
我々は,スタイル伝達のための最先端技術について,精密な比較研究を行っている。
論文 参考訳(メタデータ) (2023-08-17T15:41:08Z) - Unsupervised Neural Stylistic Text Generation using Transfer learning
and Adapters [66.17039929803933]
応答生成のためのスタイル特化属性を学習するために,モデルパラメータの0.3%しか更新しない新しい転送学習フレームワークを提案する。
我々はPERSONALITY-CAPTIONSデータセットからスタイル固有の属性を学習する。
論文 参考訳(メタデータ) (2022-10-07T00:09:22Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。
我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
論文 参考訳(メタデータ) (2021-05-21T12:27:44Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。