論文の概要: Automatic and Human-AI Interactive Text Generation
- arxiv url: http://arxiv.org/abs/2310.03878v1
- Date: Thu, 5 Oct 2023 20:26:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-10 06:34:14.498600
- Title: Automatic and Human-AI Interactive Text Generation
- Title(参考訳): 自動および人間-ai対話型テキスト生成
- Authors: Yao Dou, Philippe Laban, Claire Gardent, Wei Xu
- Abstract要約: 本チュートリアルは、最先端の自然言語生成研究の概要を提供する。
テキストからテキストへの生成タスクは、セマンティック一貫性とターゲット言語スタイルの観点からより制約される。
- 参考スコア(独自算出の注目度): 27.05024520190722
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this tutorial, we focus on text-to-text generation, a class of natural
language generation (NLG) tasks, that takes a piece of text as input and then
generates a revision that is improved according to some specific criteria
(e.g., readability or linguistic styles), while largely retaining the original
meaning and the length of the text. This includes many useful applications,
such as text simplification, paraphrase generation, style transfer, etc. In
contrast to text summarization and open-ended text completion (e.g., story),
the text-to-text generation tasks we discuss in this tutorial are more
constrained in terms of semantic consistency and targeted language styles. This
level of control makes these tasks ideal testbeds for studying the ability of
models to generate text that is both semantically adequate and stylistically
appropriate. Moreover, these tasks are interesting from a technical standpoint,
as they require complex combinations of lexical and syntactical
transformations, stylistic control, and adherence to factual knowledge, -- all
at once. With a special focus on text simplification and revision, this
tutorial aims to provide an overview of the state-of-the-art natural language
generation research from four major aspects -- Data, Models, Human-AI
Collaboration, and Evaluation -- and to discuss and showcase a few significant
and recent advances: (1) the use of non-retrogressive approaches; (2) the shift
from fine-tuning to prompting with large language models; (3) the development
of new learnable metric and fine-grained human evaluation framework; (4) a
growing body of studies and datasets on non-English languages; (5) the rise of
HCI+NLP+Accessibility interdisciplinary research to create real-world writing
assistant systems.
- Abstract(参考訳): 本チュートリアルでは,テキストを入力とする自然言語生成(nlg)タスクのクラスであるtext-to-text generationに着目し,特定の基準(可読性や言語スタイルなど)に従って改良を加えたリビジョンを生成する。
これには、テキストの単純化、パラフレーズ生成、スタイル転送など、多くの有用なアプリケーションが含まれている。
テキスト要約やオープンエンドテキスト補完(ストーリーなど)とは対照的に,本チュートリアルで論じるテキストからテキストへの生成タスクは,意味的一貫性や言語スタイルの面で制約が強い。
このレベルの制御により、これらのタスクは、セマンティックに適切かつスタイリスティックに適したテキストを生成するモデルの能力を研究するのに理想的なテストベッドとなる。
さらに、これらのタスクは、語彙的および構文的変換、様式的制御、そして事実的知識への固執の複雑な組み合わせを必要とするため、技術的な観点から興味深い。
With a special focus on text simplification and revision, this tutorial aims to provide an overview of the state-of-the-art natural language generation research from four major aspects -- Data, Models, Human-AI Collaboration, and Evaluation -- and to discuss and showcase a few significant and recent advances: (1) the use of non-retrogressive approaches; (2) the shift from fine-tuning to prompting with large language models; (3) the development of new learnable metric and fine-grained human evaluation framework; (4) a growing body of studies and datasets on non-English languages; (5) the rise of HCI+NLP+Accessibility interdisciplinary research to create real-world writing assistant systems.
関連論文リスト
- ARTIST: ARTificial Intelligence for Simplified Text [5.095775294664102]
テキスト単純化は、テキストの言語的複雑さを減らすことを目的とした、自然言語処理の重要なタスクである。
生成人工知能(AI)の最近の進歩により、語彙レベルと構文レベルの両方で自動テキストの簡略化が可能になった。
論文 参考訳(メタデータ) (2023-08-25T16:06:06Z) - Sequentially Controlled Text Generation [97.22539956688443]
GPT-2は、驚くほど人間らしく、長い文書が混ざり合ったり、人間のような文章構造に従わなかったりする文を生成する。
本研究では,長距離テキストにおける命令構造の問題について検討する。
生成と編集が可能な逐次制御型テキスト生成パイプラインを開発した。
論文 参考訳(メタデータ) (2023-01-05T21:23:51Z) - An Inclusive Notion of Text [69.36678873492373]
テキストの概念の明確さは再現可能で一般化可能なNLPにとって不可欠である,と我々は主張する。
言語的および非言語的要素の2層分類を導入し,NLPモデリングに使用することができる。
論文 参考訳(メタデータ) (2022-11-10T14:26:43Z) - How much do language models copy from their training data? Evaluating
linguistic novelty in text generation using RAVEN [63.79300884115027]
現在の言語モデルは高品質なテキストを生成することができる。
彼らは、これまで見たテキストを単にコピーしているか、それとも一般化可能な言語的抽象化を学んだのか?
本稿では、生成したテキストの新規性を評価するための分析スイートであるRAVENを紹介する。
論文 参考訳(メタデータ) (2021-11-18T04:07:09Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。
我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
論文 参考訳(メタデータ) (2021-05-21T12:27:44Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - A Survey of Knowledge-Enhanced Text Generation [81.24633231919137]
テキスト生成の目標は、機械を人間の言語で表現できるようにすることである。
入力テキストを出力テキストにマッピングすることを学ぶことで、目的を達成するために、様々なニューラルエンコーダデコーダモデルが提案されている。
この問題に対処するために、研究者は入力テキスト以外の様々な種類の知識を生成モデルに組み込むことを検討してきた。
論文 参考訳(メタデータ) (2020-10-09T06:46:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。