論文の概要: Opinion Transmission Network for Jointly Improving Aspect-oriented
Opinion Words Extraction and Sentiment Classification
- arxiv url: http://arxiv.org/abs/2011.00474v1
- Date: Sun, 1 Nov 2020 11:00:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 23:20:47.998544
- Title: Opinion Transmission Network for Jointly Improving Aspect-oriented
Opinion Words Extraction and Sentiment Classification
- Title(参考訳): アスペクト指向の意見語抽出と感情分類を共同で改善する意見伝達ネットワーク
- Authors: Chengcan Ying and Zhen Wu and Xinyu Dai and Shujian Huang and Jiajun
Chen
- Abstract要約: アスペクトレベルの感情分類(ALSC)とアスペクト指向の意見単語抽出(AOWE)は、アスペクトベースの感情分析の2つのサブタスクである。
本稿では,ALSC と AOWE の橋梁を利用した新しい接続モデル Opinion Transmission Network (OTN) を提案する。
- 参考スコア(独自算出の注目度): 56.893393134328996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect-level sentiment classification (ALSC) and aspect oriented opinion
words extraction (AOWE) are two highly relevant aspect-based sentiment analysis
(ABSA) subtasks. They respectively aim to detect the sentiment polarity and
extract the corresponding opinion words toward a given aspect in a sentence.
Previous works separate them and focus on one of them by training neural models
on small-scale labeled data, while neglecting the connections between them. In
this paper, we propose a novel joint model, Opinion Transmission Network (OTN),
to exploit the potential bridge between ALSC and AOWE to achieve the goal of
facilitating them simultaneously. Specifically, we design two tailor-made
opinion transmission mechanisms to control opinion clues flow bidirectionally,
respectively from ALSC to AOWE and AOWE to ALSC. Experiment results on two
benchmark datasets show that our joint model outperforms strong baselines on
the two tasks. Further analysis also validates the effectiveness of opinion
transmission mechanisms.
- Abstract(参考訳): アスペクトレベル感情分類(ALSC)とアスペクト指向意見単語抽出(AOWE)は、アスペクトベース感情分析(ABSA)の2つのサブタスクである。
それぞれ、感情極性を検出し、対応する意見語を文中の所定の側面に向けて抽出することを目的としている。
これまでの作業では、ニューラルネットワークを小さなラベル付きデータでトレーニングし、それらの接続を無視しながら、それらのうちの1つに集中していた。
本稿では,ALSC と AOWE の橋梁を有効利用し,それらを同時に実現するための新しいジョイントモデル Opinion Transmission Network (OTN) を提案する。
具体的には、ALSCからAOWEへ、ALSCからAOWEへ、それぞれ双方向に意見手がかりを流すための2つのテーラーメイドの意見伝達機構を設計する。
2つのベンチマークデータセットの実験結果から、我々のジョイントモデルは2つのタスクにおいて強いベースラインを上回ります。
さらに分析は意見伝達機構の有効性も検証する。
関連論文リスト
- Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - Aspect-oriented Opinion Alignment Network for Aspect-Based Sentiment
Classification [14.212306015270208]
本稿では、意見語とそれに対応する側面の文脈的関連を捉えるために、アスペクト指向オピニオンアライメントネットワーク(AOAN)を提案する。
さらに,対象の側面に関連性のある意見情報を一致させる多視点的注意機構を設計する。
提案モデルでは,3つのベンチマークデータセットに対して最先端の結果が得られた。
論文 参考訳(メタデータ) (2023-08-22T13:55:36Z) - A Bi-directional Multi-hop Inference Model for Joint Dialog Sentiment
Classification and Act Recognition [25.426172735931463]
ダイアログ知覚分類(DSC)とアクト認識(DAR)の併用作業は,ダイアログ中の各発話に対する感情ラベルと行動ラベルを同時に予測することを目的としている。
本稿では,リッチな感情を反復的に抽出・統合し,双方向で手掛かりを行動させる双方向マルチホップ推論モデル(BMIM)を提案する。
BMIMは、DARのF1スコアで少なくとも2.6%、DSCのF1スコアで1.4%、最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-08-08T17:53:24Z) - Contrastive variational information bottleneck for aspect-based
sentiment analysis [36.83876224466177]
CVIB(Contrastive Variational Information Bottleneck)フレームワークを用いて,アスペクトベース感情分析(ABSA)の素早い相関性を低減することを提案する。
提案するCVIBフレームワークは,元のネットワークと自走ネットワークで構成され,これら2つのネットワークは,コントラスト学習によって同時に最適化される。
提案手法は, 全体的な予測性能, 堅牢性, 一般化の点で, 強力な競合相手よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-03-06T02:52:37Z) - Anticipating the Unseen Discrepancy for Vision and Language Navigation [63.399180481818405]
視覚言語ナビゲーションでは、エージェントは特定のターゲットに到達するために自然言語命令に従う必要がある。
目に見える環境と目に見えない環境の間に大きな違いがあるため、エージェントがうまく一般化することは困難である。
本研究では,テストタイムの視覚的整合性を促進することによって,未知の環境への一般化を学習する,未知の離散性予測ビジョンと言語ナビゲーション(DAVIS)を提案する。
論文 参考訳(メタデータ) (2022-09-10T19:04:40Z) - A Joint Training Dual-MRC Framework for Aspect Based Sentiment Analysis [9.587513675287829]
アスペクトベースの感情分析は、アスペクト項抽出、意見項抽出、アスペクトレベルの感情分類の3つの基本的なサブタスクを含む。
以前のアプローチでは、すべてのサブタスクを統一されたエンドツーエンドフレームワークで解決できなかった。
パラメータ共有による2つのBERT-MRCモデルの共同トレーニングにより、2つの機械読解問題を構築し、すべてのサブタスクを解決します。
論文 参考訳(メタデータ) (2021-01-04T07:47:53Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
目的語抽出のためのディープラーニングモデルに文の構文構造を組み込むことを提案する。
また,ディープラーニングモデルの性能向上のために,新たな正規化手法を導入する。
提案モデルは,4つのベンチマークデータセット上での最先端性能を広範囲に解析し,達成する。
論文 参考訳(メタデータ) (2020-10-26T07:13:17Z) - Attention Transfer Network for Aspect-level Sentiment Classification [30.704053194980528]
アスペクトレベルの感情分類(ASC)は、文中の特定の意見対象の感情極性を検出することを目的としている。
データ不足は、しばしば注意機構が、ターゲットの対応する感情語に焦点を合わせるのに失敗する。
本稿では、文書レベルの感情分類データセットから注意知識をうまく活用できる新しい注意伝達ネットワーク(ATN)を提案する。
論文 参考訳(メタデータ) (2020-10-23T04:26:33Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
資源豊富なレビュー評価分類データセットから低リソースタスクTOWEへ意見知識を伝達する新しいモデルを提案する。
我々のモデルは、他の最先端手法よりも優れた性能を達成し、意見の知識を伝達することなく、ベースモデルを大幅に上回る。
論文 参考訳(メタデータ) (2020-01-07T11:50:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。