論文の概要: CHIME: Cross-passage Hierarchical Memory Network for Generative Review
Question Answering
- arxiv url: http://arxiv.org/abs/2011.00519v1
- Date: Sun, 1 Nov 2020 14:48:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 23:20:08.501355
- Title: CHIME: Cross-passage Hierarchical Memory Network for Generative Review
Question Answering
- Title(参考訳): CHIME: 世代別質問応答のためのクロスパス階層型メモリネットワーク
- Authors: Junru Lu, Gabriele Pergola, Lin Gui, Binyang Li, Yulan He
- Abstract要約: テキスト生成による質問応答(QA)のためのクロスパス階層型メモリネットワークであるCHIMEを紹介する。
XLNetは、クロスパスエビデンスを収集するコンテキストメモリと、バッファとして動作する応答メモリという、2つのコンポーネントからなる補助メモリモジュールを導入している。
- 参考スコア(独自算出の注目度): 33.508528349110115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CHIME, a cross-passage hierarchical memory network for question
answering (QA) via text generation. It extends XLNet introducing an auxiliary
memory module consisting of two components: the context memory collecting
cross-passage evidences, and the answer memory working as a buffer continually
refining the generated answers. Empirically, we show the efficacy of the
proposed architecture in the multi-passage generative QA, outperforming the
state-of-the-art baselines with better syntactically well-formed answers and
increased precision in addressing the questions of the AmazonQA review dataset.
An additional qualitative analysis revealed the interpretability introduced by
the memory module.
- Abstract(参考訳): テキスト生成による質問応答(QA)のためのクロスパス階層型メモリネットワークCHIMEを紹介する。
XLNetは、クロスパスエビデンスを収集するコンテキストメモリと、バッファとして動作する応答メモリという、2つのコンポーネントからなる補助メモリモジュールを導入している。
提案手法の有効性を実証的に示し,AmazonQAレビューデータセットの課題に対処する上で,より構文的に良好な回答と精度の向上により,最先端のベースラインよりも優れていることを示す。
追加の定性解析により、メモリモジュールによって導入された解釈可能性が明らかになった。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems [14.62114319247837]
Retrieval-augmented Generation (RAG)技術は、大規模言語モデル(LLM)のコンテキスト内学習機能を利用して、より正確で関連する応答を生成する。
重要なコンポーネントであるQuery Rewriterモジュールは、検索フレンドリーなクエリを生成することで知識検索を強化する。
これら4つのRAGモジュールは、RAGシステムの応答品質と効率を相乗的に改善する。
論文 参考訳(メタデータ) (2024-07-15T12:35:00Z) - QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism [46.441032033076034]
メモリメカニズムは、長いコンテキストを管理するための柔軟なソリューションを提供する。
本稿では,二重構造メモリプールを組み込んだ新しい手法であるQRMeMを提案する。
マルチチョイス質問 (MCQ) とマルチドキュメント質問応答 (Multi-doc QA) のベンチマークによる評価では,既存手法と比較してQRMeMの性能が向上している。
論文 参考訳(メタデータ) (2024-06-19T02:46:18Z) - Multi-Clue Reasoning with Memory Augmentation for Knowledge-based Visual
Question Answering [32.21000330743921]
より一般的な質問に答える能力を備えたモデルを実現する新しいフレームワークを提案する。
具体的には、画像検索関連関係句を予測するために、明確に定義された検出器が採用されている。
最適解答は、最も高いスコアで支持事実を選択することにより予測される。
論文 参考訳(メタデータ) (2023-12-20T02:35:18Z) - A Memory Model for Question Answering from Streaming Data Supported by
Rehearsal and Anticipation of Coreference Information [19.559853775982386]
本稿では,ストリーミングデータから質問応答タスクを解くための重要な情報に入力を処理しながら,リハーサルと予測を行うメモリモデルを提案する。
我々は,bAbIデータセットと大規模テキスト(Narrative QA)およびビデオ(ActivityNet-QA)質問応答データセットを用いて,我々のモデルを検証した。
論文 参考訳(メタデータ) (2023-05-12T15:46:36Z) - Augmenting Pre-trained Language Models with QA-Memory for Open-Domain
Question Answering [38.071375112873675]
質問応答型エンコーダデコーダモデルの提案と事前学習戦略について述べる。
これにより、シングルホップのQAタスクにおいて、以前のQA検索方法よりも優れたエンドツーエンドシステムが得られる。
論文 参考訳(メタデータ) (2022-04-10T02:33:00Z) - Read before Generate! Faithful Long Form Question Answering with Machine
Reading [77.17898499652306]
LFQA(Long-form Question answering)は、ある質問に対する段落長の回答を生成することを目的としている。
生成と機械読取を協調的にモデル化する新しいエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T10:41:17Z) - Joint Models for Answer Verification in Question Answering Systems [85.93456768689404]
我々は3方向のマルチクラス化器を構築し、解答が他の解答をサポートするか、反証するか、あるいは中立かを決定する。
私たちは、WikiQA、TREC-QA、実世界のデータセットでモデルをテストしました。
論文 参考訳(メタデータ) (2021-07-09T05:34:36Z) - Tell Me How to Ask Again: Question Data Augmentation with Controllable
Rewriting in Continuous Space [94.8320535537798]
機械読解(MRC)、質問生成、質問答え自然言語推論タスクのための制御可能な書き換えベースの質問データ拡張(CRQDA)。
質問データ拡張タスクを制約付き質問書き換え問題として扱い、コンテキスト関連、高品質、多様な質問データサンプルを生成する。
論文 参考訳(メタデータ) (2020-10-04T03:13:46Z) - ClarQ: A large-scale and diverse dataset for Clarification Question
Generation [67.1162903046619]
そこで我々は,スタックエクスチェンジから抽出したポストコメンデーションに基づいて,多様な,大規模な明確化質問データセットの作成を支援する,新しいブートストラップフレームワークを考案した。
質問応答の下流タスクに適用することで,新たに作成したデータセットの有用性を定量的に示す。
我々はこのデータセットを公開し、ダイアログと質問応答システムの拡張という大きな目標を掲げて、質問生成の分野の研究を促進する。
論文 参考訳(メタデータ) (2020-06-10T17:56:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。