Quantum Simulation of Open Quantum Dynamics via Non-Markovian Quantum State Diffusion
- URL: http://arxiv.org/abs/2404.10655v2
- Date: Wed, 17 Apr 2024 05:12:53 GMT
- Title: Quantum Simulation of Open Quantum Dynamics via Non-Markovian Quantum State Diffusion
- Authors: Yukai Guo, Xing Gao,
- Abstract summary: Quantum simulation of non-Markovian open quantum dynamics is essential but challenging for standard quantum computers.
We introduce a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in system with non-Markovian environment.
- Score: 2.9413085575648235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulation of non-Markovian open quantum dynamics is essential but challenging for standard quantum computers due to their non-Hermitian nature, leading to non-unitary evolution, and the limitations of available quantum resources. Here we introduce a hybrid quantum-classical algorithm designed for simulating dissipative dynamics in system with non-Markovian environment. Our approach includes formulating a non-Markovian Stochastic Schr\"odinger equation with complex frequency modes (cNMSSE) where the non-Markovianity is characterized by the mode excitation. Following this, we utilize variational quantum simulation to capture the non-unitary evolution within the cNMSSE framework, leading to a substantial reduction in qubit requirements. To demonstrate our approach, we investigated the spin-boson model and dynamic quantum phase transitions (DQPT) within transverse field Ising model (TFIM). Significantly, our findings reveal the enhanced DQPT in TFIM due to non-Markovian behavior.
Related papers
- qHEOM: A Quantum Algorithm for Simulating Non-Markovian Quantum Dynamics Using the Hierarchical Equations of Motion [0.0]
We introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems.
Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2024-11-18T20:41:10Z) - Neural Network Approach for Non-Markovian Dissipative Dynamics of Many-Body Open Quantum Systems [9.775774445091516]
We integrate the neural quantum states approach into the dissipaton-embedded quantum master equation in second quantization (DQME-SQ)
Our approach compactly represents the reduced density tensor, explicitly encoding the combined effects of system-environment correlations and nonMarkovian memory.
The novel RBM-based DQME-SQ approach paves the way for investigating non-Markovian open quantum dynamics in previously intractable regimes.
arXiv Detail & Related papers (2024-04-17T06:17:08Z) - Ensemble Variational Quantum Algorithm for Non-Markovian Quantum
Dynamics [5.84093922354671]
We develop a variational quantum algorithm capable of simulating non-Markovian dynamics on NISQ devices.
We validated the algorithm on the simulator and demonstrated its performance on the IBM quantum device.
The framework is naturally adapted to any anharmonic bath with non-linear coupling to the system, and is also well suited for simulating spin chain dynamics in a dissipative environment.
arXiv Detail & Related papers (2024-03-07T20:27:40Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Succinct Description and Efficient Simulation of Non-Markovian Open
Quantum Systems [1.713291434132985]
Non-Markovian open quantum systems represent the most general dynamics when the quantum system is coupled with a bath environment.
We provide a succinct representation of the dynamics of non-Markovian open quantum systems with quantifiable error.
We also develop an efficient quantum algorithm for simulating such dynamics.
arXiv Detail & Related papers (2021-11-05T03:35:50Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Efficient Quantum Simulation of Open Quantum System Dynamics on Noisy
Quantum Computers [0.0]
We show that quantum dissipative dynamics can be simulated efficiently across coherent-to-incoherent regimes.
This work provides a new direction for quantum advantage in the NISQ era.
arXiv Detail & Related papers (2021-06-24T10:37:37Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.