論文の概要: Model-Agnostic Explanations using Minimal Forcing Subsets
- arxiv url: http://arxiv.org/abs/2011.00639v3
- Date: Sun, 20 Jun 2021 03:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 23:38:30.430018
- Title: Model-Agnostic Explanations using Minimal Forcing Subsets
- Title(参考訳): 最小強制部分集合を用いたモデル非依存な説明
- Authors: Xing Han, Joydeep Ghosh
- Abstract要約: そこで本研究では,モデル決定に欠かせない最小限のトレーニングサンプルを同定する,モデルに依存しない新しいアルゴリズムを提案する。
本アルゴリズムは,制約付き最適化問題を解くことにより,このような「欠かせない」サンプルの集合を反復的に同定する。
結果から,本アルゴリズムは局所モデルの振る舞いをよりよく理解する上で,効率的かつ容易に記述できるツールであることがわかった。
- 参考スコア(独自算出の注目度): 11.420687735660097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can we find a subset of training samples that are most responsible for a
specific prediction made by a complex black-box machine learning model? More
generally, how can we explain the model's decisions to end-users in a
transparent way? We propose a new model-agnostic algorithm to identify a
minimal set of training samples that are indispensable for a given model's
decision at a particular test point, i.e., the model's decision would have
changed upon the removal of this subset from the training dataset. Our
algorithm identifies such a set of "indispensable" samples iteratively by
solving a constrained optimization problem. Further, we speed up the algorithm
through efficient approximations and provide theoretical justification for its
performance. To demonstrate the applicability and effectiveness of our
approach, we apply it to a variety of tasks including data poisoning detection,
training set debugging and understanding loan decisions. The results show that
our algorithm is an effective and easy-to-comprehend tool that helps to better
understand local model behavior, and therefore facilitates the adoption of
machine learning in domains where such understanding is a requisite.
- Abstract(参考訳): 複雑なブラックボックス機械学習モデルによる特定の予測に最も責任があるトレーニングサンプルのサブセットを見つけるには、どうすればよいのでしょう?
より一般的に、モデルの決定をエンドユーザに透過的な方法でどのように説明できますか?
そこで本研究では,特定のテストポイントにおいて与えられたモデルの判断に欠かせない,最小限のトレーニングサンプルを識別する新しいモデル非依存アルゴリズムを提案する。
本アルゴリズムは,制約付き最適化問題を解くことにより,このような「欠かせない」サンプルの集合を反復的に同定する。
さらに,効率的な近似によってアルゴリズムを高速化し,その性能を理論的に正当化する。
このアプローチの適用性と有効性を示すために,我々は,データ中毒検出,トレーニングセットデバッグ,ローン決定の理解など,さまざまなタスクに適用した。
その結果,本アルゴリズムは,局所的なモデル行動の理解を深める上で有効で理解しやすいツールであり,そのような理解が必須な領域における機械学習の導入を促進する。
関連論文リスト
- Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
アンラーニングの保証は、しばしば教師付き学習設定に限られる。
我々は、事前学習と微調整のパラダイムにおいて、初となるアンラーニングの理論的保証を提供する。
我々は、特定のタスクに微調整されたモデルから事前学習データを容易に解放できることを示し、ベースモデルを変更することなく、このデータを解放できることを示した。
論文 参考訳(メタデータ) (2024-11-19T16:04:31Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
アクティブな学習は、機械学習エージェントと人間のアノテーションとのインタラクションを活用することで、効率的なモデルトレーニングを可能にする。
スパース近似の観点からバッチアクティブラーニングを定式化する新しいフレームワークを提案し,提案する。
我々のアクティブラーニング手法は、ラベルのないデータプールから、対応するトレーニング損失関数が、そのフルデータプールに近似するように、情報的サブセットを見つけることを目的としている。
論文 参考訳(メタデータ) (2022-11-01T03:20:28Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Finding the Homology of Decision Boundaries with Active Learning [26.31885403636642]
本稿では,意思決定境界のホモロジーを回復するための能動的学習アルゴリズムを提案する。
我々のアルゴリズムは、ラベルを必要とするサンプルを逐次かつ適応的に選択する。
いくつかのデータセットの実験では、ホモロジーを回復する際のサンプルの複雑さの改善が示されている。
論文 参考訳(メタデータ) (2020-11-19T04:22:06Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。