論文の概要: Learning Model Agnostic Explanations via Constraint Programming
- arxiv url: http://arxiv.org/abs/2411.08478v1
- Date: Wed, 13 Nov 2024 09:55:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:09:16.173888
- Title: Learning Model Agnostic Explanations via Constraint Programming
- Title(参考訳): 制約プログラミングによるモデルに依存しない説明の学習
- Authors: Frederic Koriche, Jean-Marie Lagniez, Stefan Mengel, Chi Tran,
- Abstract要約: 解釈可能な機械学習は、不透明な分類器による予測を人間に理解可能な言葉で説明するという、繰り返し発生する課題に直面している。
本稿では,このタスクを制約最適化問題(Constraint Optimization Problem)として,入力データインスタンスの最小誤差と境界サイズの説明と,ブラックボックスが生成したサンプルの集合を求める。
提案手法は,様々なデータセット上で実証的に評価し,最先端のアンカー法よりも統計的に優れていることを示す。
- 参考スコア(独自算出の注目度): 8.257194221102225
- License:
- Abstract: Interpretable Machine Learning faces a recurring challenge of explaining the predictions made by opaque classifiers such as ensemble models, kernel methods, or neural networks in terms that are understandable to humans. When the model is viewed as a black box, the objective is to identify a small set of features that jointly determine the black box response with minimal error. However, finding such model-agnostic explanations is computationally demanding, as the problem is intractable even for binary classifiers. In this paper, the task is framed as a Constraint Optimization Problem, where the constraint solver seeks an explanation of minimum error and bounded size for an input data instance and a set of samples generated by the black box. From a theoretical perspective, this constraint programming approach offers PAC-style guarantees for the output explanation. We evaluate the approach empirically on various datasets and show that it statistically outperforms the state-of-the-art heuristic Anchors method.
- Abstract(参考訳): Interpretable Machine Learningは、アンサンブルモデルやカーネルメソッド、ニューラルネットワークといった不透明な分類器による予測を人間に理解可能な形で説明するという、繰り返し発生する課題に直面している。
モデルがブラックボックスと見なされる場合、目的はブラックボックス応答を最小限の誤差で共同で決定する少数の特徴を識別することである。
しかし、そのようなモデルに依存しない説明を見つけることは、二項分類器でさえ問題に難渋するため、計算的に要求される。
本稿では,このタスクを制約最適化問題(Constraint Optimization Problem)として,入力データインスタンスの最小誤差と境界サイズの説明と,ブラックボックスが生成したサンプルの集合を求める。
理論的には、この制約プログラミングアプローチは出力説明に対するPACスタイルの保証を提供する。
提案手法は,様々なデータセット上で実証的に評価し,最先端のヒューリスティックアンカー法よりも統計的に優れていることを示す。
関連論文リスト
- Generating collective counterfactual explanations in score-based
classification via mathematical optimization [4.281723404774889]
インスタンスの反実的な説明は、このインスタンスを最小限に修正して、摂動インスタンスを望ましいクラスに分類する方法を示している。
カウンターファクト・アナリティクスの文献の多くは、単一インスタンスの単一カウントファクト・セッティングに焦点を当てている。
新規な数学的最適化モデルにより、興味ある群における各インスタンスに対する対実的説明を提供する。
論文 参考訳(メタデータ) (2023-10-19T15:18:42Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
我々は,ブラックボックスの分類を正当化する対照的な説明を提供する,ポストホックモデルXAI手法を提案する。
CLIMAXと呼ばれる手法は,局所的な分類法に基づく。
LIME, BayLIME, SLIMEなどのベースラインと比較して, 一貫性が向上することを示す。
論文 参考訳(メタデータ) (2023-07-02T22:52:58Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - Interpretations Steered Network Pruning via Amortized Inferred Saliency
Maps [85.49020931411825]
限られたリソースを持つエッジデバイスにこれらのモデルをデプロイするには、畳み込みニューラルネットワーク(CNN)圧縮が不可欠である。
本稿では,新しい視点からチャネルプルーニング問題に対処するために,モデルの解釈を活用して,プルーニング過程を解析する手法を提案する。
本研究では,実時間スムーズなスムーズなスムーズなスムーズなマスク予測を行うセレクタモデルを導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2022-09-07T01:12:11Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
構造化データの解釈可能なパターン分類のためのLCCNモデルを提案する。
本手法は, 決定過程における各特徴の関連性を定量化し, 説明を提供する独自のメカニズムを提供する。
解釈可能なモデルでは,最先端の白黒ボックスと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2021-07-07T18:14:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Model-Agnostic Explanations using Minimal Forcing Subsets [11.420687735660097]
そこで本研究では,モデル決定に欠かせない最小限のトレーニングサンプルを同定する,モデルに依存しない新しいアルゴリズムを提案する。
本アルゴリズムは,制約付き最適化問題を解くことにより,このような「欠かせない」サンプルの集合を反復的に同定する。
結果から,本アルゴリズムは局所モデルの振る舞いをよりよく理解する上で,効率的かつ容易に記述できるツールであることがわかった。
論文 参考訳(メタデータ) (2020-11-01T22:45:16Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
本稿では、金融における小売クレジットスコアリングに使用される機械学習(ML)モデルの検証と説明のための新しい方向性と方法論について述べる。
提案するフレームワークは人工知能(AI)のセキュリティと敵MLの分野からモチベーションを引き出す。
論文 参考訳(メタデータ) (2020-08-24T00:05:13Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
データから制約をマイニングするための一般的なフレームワークを提案する。
特に、構造化された出力予測の推論を整数線形プログラミング(ILP)問題とみなす。
提案手法は,9×9のスドクパズルの解法を学習し,基礎となるルールを提供することなく,例からツリー問題を最小限に分散させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-06-18T20:09:53Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。