Multi-View Adaptive Fusion Network for 3D Object Detection
- URL: http://arxiv.org/abs/2011.00652v2
- Date: Tue, 8 Dec 2020 03:54:51 GMT
- Title: Multi-View Adaptive Fusion Network for 3D Object Detection
- Authors: Guojun Wang, Bin Tian, Yachen Zhang, Long Chen, Dongpu Cao, Jian Wu
- Abstract summary: 3D object detection based on LiDAR-camera fusion is becoming an emerging research theme for autonomous driving.
We propose a single-stage multi-view fusion framework that takes LiDAR bird's-eye view, LiDAR range view and camera view images as inputs for 3D object detection.
We design an end-to-end learnable network named MVAF-Net to integrate these two components.
- Score: 14.506796247331584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection based on LiDAR-camera fusion is becoming an emerging
research theme for autonomous driving. However, it has been surprisingly
difficult to effectively fuse both modalities without information loss and
interference. To solve this issue, we propose a single-stage multi-view fusion
framework that takes LiDAR bird's-eye view, LiDAR range view and camera view
images as inputs for 3D object detection. To effectively fuse multi-view
features, we propose an attentive pointwise fusion (APF) module to estimate the
importance of the three sources with attention mechanisms that can achieve
adaptive fusion of multi-view features in a pointwise manner. Furthermore, an
attentive pointwise weighting (APW) module is designed to help the network
learn structure information and point feature importance with two extra tasks,
namely, foreground classification and center regression, and the predicted
foreground probability is used to reweight the point features. We design an
end-to-end learnable network named MVAF-Net to integrate these two components.
Our evaluations conducted on the KITTI 3D object detection datasets demonstrate
that the proposed APF and APW modules offer significant performance gains.
Moreover, the proposed MVAF-Net achieves the best performance among all
single-stage fusion methods and outperforms most two-stage fusion methods,
achieving the best trade-off between speed and accuracy on the KITTI benchmark.
Related papers
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - Multi-scale Feature Fusion with Point Pyramid for 3D Object Detection [18.41721888099563]
This paper proposes the Point Pyramid RCNN (POP-RCNN), a feature pyramid-based framework for 3D object detection on point clouds.
The proposed method can be applied to a variety of existing frameworks to increase feature richness, especially for long-distance detection.
arXiv Detail & Related papers (2024-09-06T20:13:14Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.
Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - PoIFusion: Multi-Modal 3D Object Detection via Fusion at Points of Interest [65.48057241587398]
PoIFusion is a framework to fuse information of RGB images and LiDAR point clouds at the points of interest (PoIs)
Our approach maintains the view of each modality and obtains multi-modal features by computation-friendly projection and computation.
We conducted extensive experiments on nuScenes and Argoverse2 datasets to evaluate our approach.
arXiv Detail & Related papers (2024-03-14T09:28:12Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - EPNet++: Cascade Bi-directional Fusion for Multi-Modal 3D Object
Detection [56.03081616213012]
We propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion(CB-Fusion) module.
The proposed CB-Fusion module boosts the plentiful semantic information of point features with the image features in a cascade bi-directional interaction fusion manner.
The experiment results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-21T10:48:34Z) - MBDF-Net: Multi-Branch Deep Fusion Network for 3D Object Detection [17.295359521427073]
We propose a Multi-Branch Deep Fusion Network (MBDF-Net) for 3D object detection.
In the first stage, our multi-branch feature extraction network utilizes Adaptive Attention Fusion modules to produce cross-modal fusion features from single-modal semantic features.
In the second stage, we use a region of interest (RoI) -pooled fusion module to generate enhanced local features for refinement.
arXiv Detail & Related papers (2021-08-29T15:40:15Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.