Complete complementarity relations in curved spacetimes
- URL: http://arxiv.org/abs/2011.00736v3
- Date: Mon, 15 Mar 2021 17:51:24 GMT
- Title: Complete complementarity relations in curved spacetimes
- Authors: Marcos L. W. Basso and Jonas Maziero
- Abstract summary: We extend complete complementarity relations to curved spacetimes by considering a succession of infinitesimal local Lorentz transformations.
We study the behavior of these different complementary properties of massive spin-$1/2$ particles in the Schwarzschild spacetime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend complete complementarity relations to curved spacetimes by
considering a succession of infinitesimal local Lorentz transformations, which
implies that complementarity remains valid as the quanton travels through its
world line and the complementarity aspects in different points of spacetime are
connected. This result allows the study of these different complementary
aspects of a quantum system as it travels through spacetime. In particular, we
study the behavior of these different complementary properties of massive
spin-$1/2$ particles in the Schwarzschild spacetime. For geodetic circular
orbits, we find that the spin state of one particle oscillates between a
separable and an entangled state. For non-geodetic circular orbits, we notice
that the frequency of these oscillations gets bigger as the orbit gets nearer
to the Schwarzschild radius $r_s$.
Related papers
- Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Universal role of curvature in vacuum entanglement [0.0]
We highlight some universal features concerning the role of spacetime curvature in the entanglement induced between quantum probes coupled to a quantum field in a suitable vacuum state.
Our analysis shows that curvature can induce entanglement features in certain regions of the above parameter space, in a manner which facilitates using entanglement as a probe of spacetime curvature.
arXiv Detail & Related papers (2023-11-25T13:14:33Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Unveiling quantum complementarity tradeoffs in relativistic scenarios [0.0]
We show how the tradeoff between quantities of a complete complementarity relation is modified in an arbitrary spacetime for a particle with an internal spin.
Our results extend the finding that general relativity induces a universal decoherence effect on quantum superpositions.
arXiv Detail & Related papers (2023-06-13T21:02:47Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Coherent transfer of the transverse momentum of an optical vortex beam
to the motion of a single trapped ion [22.42090005507693]
We demonstrate the excitation, using a structured light beam carrying orbital angular momentum, of the center of mass motion of a single atom.
We characterize the coherent interaction by an effective transverse Lamb-Dicke factor $etamathrmexp_perp62(5)$ which is in agreement with our theoretical prediction $etamathrmtheo_perp57(1)$
arXiv Detail & Related papers (2022-06-10T06:15:08Z) - Gravitational orbits, double-twist mirage, and many-body scars [77.34726150561087]
We explore the implications of stable gravitational orbits around an AdS black hole for the boundary conformal field theory.
The orbits are long-lived states that eventually decay due to gravitational radiation and tunneling.
arXiv Detail & Related papers (2022-04-20T19:18:05Z) - The Effect of Stationary Axisymmetric Spacetimes in Interferometric
Visibility [0.0]
We consider a scenario in which a spin-1/2 quanton goes through a superposition of co-rotating and counter-rotating circular paths.
Since the spin of the particle plays the role of a quantum clock, as the quanton moves in a superposed path it gets entangled with the momentum.
In stationary axisymmetric spacetimes there is a difference in proper time elapsed along the two trajectories.
arXiv Detail & Related papers (2021-02-18T21:28:11Z) - Discrete phase space and continuous time relativistic quantum mechanics
I: Planck oscillators and closed string-like circular orbits [0.0]
This paper investigates the discrete phase space continuous time representation of relativistic quantum mechanics involving a characteristic length $l$.
Fundamental physical constants such as $hbar$, $c$, and $l$ are retained for most sections of the paper.
arXiv Detail & Related papers (2020-12-28T15:03:53Z) - Intertwined Space-Time Symmetry, Orbital Magnetism and Dynamical Berry
Curvature in a Circularly Shaken Optical Lattice [2.0892060344874492]
We study the circular shaking of a two dimensional optical lattice, which is essentially a (2+1) dimensional space-time lattice.
The intertwined space-time symmetries are further uncovered to elucidate the degeneracy in the spectrum solved with the generalized Bloch-Floquet theorem.
arXiv Detail & Related papers (2020-12-03T10:55:11Z) - Poincar\'{e} crystal on the one-dimensional lattice [8.25487382053784]
We develop the quantum theory of particles with discrete Poincar'e symmetry on the one-dimensional Bravais lattice.
We find the conditions for the existence of representation, which are expressed as the congruence relation between quasi-momentum and quasi-energy.
During the propagation, the particles stay localized on a single or a few sites to preserve the Lorentz symmetry.
arXiv Detail & Related papers (2020-09-20T14:44:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.