論文の概要: Introducing various Semantic Models for Amharic: Experimentation and
Evaluation with multiple Tasks and Datasets
- arxiv url: http://arxiv.org/abs/2011.01154v2
- Date: Wed, 23 Feb 2022 18:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 10:54:08.985083
- Title: Introducing various Semantic Models for Amharic: Experimentation and
Evaluation with multiple Tasks and Datasets
- Title(参考訳): アンハリックのための様々な意味モデルの導入:複数のタスクとデータセットによる実験と評価
- Authors: Seid Muhie Yimam and Abinew Ali Ayele and Gopalakrishnan Venkatesh,
and Ibrahim Gashaw, and Chris Biemann
- Abstract要約: 我々はAmharicの異なるセマンティックモデルを導入する。
モデルは word2Vec 埋め込み、分散シソーラス (DT)、コンテキスト埋め込み、DT 埋め込みを使って構築される。
新たに訓練されたモデルは、事前訓練された多言語モデルよりも優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 19.855120632909124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The availability of different pre-trained semantic models enabled the quick
development of machine learning components for downstream applications. Despite
the availability of abundant text data for low resource languages, only a few
semantic models are publicly available. Publicly available pre-trained models
are usually built as a multilingual version of semantic models that can not fit
well for each language due to context variations. In this work, we introduce
different semantic models for Amharic. After we experiment with the existing
pre-trained semantic models, we trained and fine-tuned nine new different
models using a monolingual text corpus. The models are build using word2Vec
embeddings, distributional thesaurus (DT), contextual embeddings, and DT
embeddings obtained via network embedding algorithms. Moreover, we employ these
models for different NLP tasks and investigate their impact. We find that newly
trained models perform better than pre-trained multilingual models.
Furthermore, models based on contextual embeddings from RoBERTA perform better
than the word2Vec models.
- Abstract(参考訳): さまざまなトレーニング済みセマンティックモデルの可用性により、下流アプリケーションのための機械学習コンポーネントの迅速な開発が可能になった。
低リソース言語向けの豊富なテキストデータが利用可能であるにもかかわらず、いくつかのセマンティックモデルのみが公開されている。
一般に利用可能な事前訓練モデルは通常、文脈の変化のために各言語に適さない多言語バージョンのセマンティックモデルとして構築される。
本研究では,amharicに対して異なる意味モデルを導入する。
既存の訓練済みセマンティックモデルを用いて実験した後、モノリンガルテキストコーパスを用いて9つの新しいモデルの訓練と微調整を行った。
モデルは、word2Vec埋め込み、分散シソーラス(DT)、コンテキスト埋め込み、ネットワーク埋め込みアルゴリズムによって得られるDT埋め込みを用いて構築される。
さらに,これらのモデルを異なるNLPタスクに適用し,その影響を調査した。
新たに訓練されたモデルは、事前訓練された多言語モデルよりも優れた性能を発揮する。
さらに、RoBERTAの文脈埋め込みに基づくモデルは、ワード2Vecモデルよりも優れている。
関連論文リスト
- ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
クロアチア語、セルビア語、ボスニア語、モンテネグロ語のベンチマークを設定しました。
我々は、利用可能な多言語モデルの追加事前学習により、専用のin-scratchモデルに匹敵する性能が得られることを示す。
また、Slovenianの場合、隣接する言語は、最終モデルの性能にほとんど、あるいは全く損なわない追加の事前訓練に含めることができることを示す。
論文 参考訳(メタデータ) (2024-04-08T11:55:44Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
コントラスト的視覚言語モデル(例えばCLIP)は、コントラスト的トレーニングを通じて視覚モデルと言語モデルの全てのパラメータを更新することによって作成される。
パラメータ更新の最小セット($7%)が、フルモデルトレーニングと同じパフォーマンスを実現可能であることを示す。
既存の知識がパラメータ効率のトレーニングにおいてより強く保存されていることを示す。
論文 参考訳(メタデータ) (2023-03-21T14:12:08Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
低リソース言語に対するモノリンガルデータによる事前学習の効果を分析する。
新たに作成したマルタ語コーパスを提示し、事前学習データサイズとドメインが下流のパフォーマンスに与える影響を判定する。
スクラッチからトレーニングされた単言語BERTモデル(BERTu)と、さらに事前訓練された多言語BERT(mBERTu)の2つのモデルを比較する。
論文 参考訳(メタデータ) (2022-05-21T06:44:59Z) - Paraphrastic Representations at Scale [134.41025103489224]
私たちは、英語、アラビア語、ドイツ語、フランス語、スペイン語、ロシア語、トルコ語、中国語の訓練されたモデルをリリースします。
我々はこれらのモデルを大量のデータでトレーニングし、元の論文から大幅に性能を向上した。
論文 参考訳(メタデータ) (2021-04-30T16:55:28Z) - Towards Trustworthy Deception Detection: Benchmarking Model Robustness
across Domains, Modalities, and Languages [10.131671217810581]
我々は、ドメイン外データ、モダリティ特化特徴、および英語以外の言語に対するモデルロバスト性を評価する。
我々は、追加の画像コンテンツを入力として、ELMo埋め込みはBERTまたはGLoVeと比較して大幅に少ないエラーをもたらすことを発見しました。
論文 参考訳(メタデータ) (2021-04-23T18:05:52Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
ウィキペディアデータから言語固有のBERTモデルを作成するための、単純で完全に自動化されたパイプラインを導入します。
我々は,これらのモデルの有効性を,Universal Dependenciesデータに基づく最先端のUDifyを用いて評価する。
論文 参考訳(メタデータ) (2020-06-02T11:57:53Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。