論文の概要: xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2503.09313v2
- Date: Sun, 16 Mar 2025 14:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 12:36:43.391260
- Title: xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation
- Title(参考訳): xVLM2Vec:自己知識蒸留によるLVLMを用いた埋め込みモデルの多言語化
- Authors: Elio Musacchio, Lucia Siciliani, Pierpaolo Basile, Giovanni Semeraro,
- Abstract要約: 本稿では,言語データに基づいて学習した大規模視覚言語モデルの適応手法を提案し,その性能を向上する。
マルチ言語およびマルチモーダル埋め込みモデルの有効性を評価するためのベンチマークを導入する。
- 参考スコア(独自算出の注目度): 2.9998889086656586
- License:
- Abstract: In the current literature, most embedding models are based on the encoder-only transformer architecture to extract a dense and meaningful representation of the given input, which can be a text, an image, and more. With the recent advances in language modeling thanks to the introduction of Large Language Models, the possibility of extracting embeddings from these large and extensively trained models has been explored. However, current studies focus on textual embeddings in English, which is also the main language on which these models have been trained. Furthermore, there are very few models that consider multimodal and multilingual input. In light of this, we propose an adaptation methodology for Large Vision-Language Models trained on English language data to improve their performance in extracting multilingual and multimodal embeddings. Finally, we design and introduce a benchmark to evaluate the effectiveness of multilingual and multimodal embedding models.
- Abstract(参考訳): 現在の文献では、ほとんどの埋め込みモデルはエンコーダのみのトランスフォーマーアーキテクチャに基づいて、与えられた入力の密度が高く意味のある表現を抽出する。
大規模言語モデルの導入による言語モデリングの最近の進歩により、これらの大規模で広範囲に訓練されたモデルから埋め込みを抽出する可能性も検討されている。
しかし、近年の研究は、これらのモデルが訓練された主要な言語である英語のテキスト埋め込みに焦点を当てている。
さらに、多モーダルおよび多言語入力を考慮したモデルはほとんどない。
そこで本研究では,多言語および多モーダルな埋め込みを抽出する際の性能向上のために,英語データに基づいて訓練された大規模視覚言語モデルの適応手法を提案する。
最後に,マルチ言語およびマルチモーダル埋め込みモデルの有効性を評価するためのベンチマークを設計し,導入する。
関連論文リスト
- LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
LUSIFERは,LLMをベースとした多言語タスクの埋め込みモデルに,多言語監視を必要とせずに適用可能なゼロショット方式である。
LUSIFERのアーキテクチャは多言語エンコーダを組み、言語ユニバーサル学習者として機能し、埋め込み固有のタスクに最適化されたLLMベースの埋め込みモデルと組み合わせている。
5つの主要な埋め込みタスク、123の多様なデータセット、14言語にわたるカバレッジを含む新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-01-01T15:43:07Z) - IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities [4.269326314400742]
マルチモーダル大言語モデル(MLLM)のための内適応アーキテクチャを導入する。
このアーキテクチャは、大きな言語モデル内の様々な深さで複数のマルチモーダルアダプタを組み込んで、テキスト指向のトランスフォーマー層との直接の相互作用を容易にする。
大規模な整列データを必要とする従来のフリーズ言語モデルとは異なり、提案アーキテクチャは小規模データセットにおいて優れた性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-23T08:10:13Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining [4.38070902806635]
クロアチア語、セルビア語、ボスニア語、モンテネグロ語のベンチマークを設定しました。
我々は、利用可能な多言語モデルの追加事前学習により、専用のin-scratchモデルに匹敵する性能が得られることを示す。
また、Slovenianの場合、隣接する言語は、最終モデルの性能にほとんど、あるいは全く損なわない追加の事前訓練に含めることができることを示す。
論文 参考訳(メタデータ) (2024-04-08T11:55:44Z) - ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages [76.35234803589412]
MPMは、英語以外の言語で大規模なマルチモーダルモデルを訓練するための効果的な訓練パラダイムである。
画像・テキスト・テキスト・画像生成における大規模なマルチモーダルモデルVisCPMを構築し,中国語の最先端(オープンソース)性能を実現する。
論文 参考訳(メタデータ) (2023-08-23T09:55:41Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Towards Developing a Multilingual and Code-Mixed Visual Question
Answering System by Knowledge Distillation [20.33235443471006]
本稿では,英語ビジョンモデル(教師)を,等しく効果的な多言語・コード混合モデル(学生)に拡張する知識蒸留手法を提案する。
また、大規模な多言語およびコード混合VQAデータセットを11の異なる言語セットアップで作成します。
実験結果と深部分析により,11種類の言語セットアップ上で,事前学習した言語ビジョンモデルに対して提案したVQAモデルの有効性が示された。
論文 参考訳(メタデータ) (2021-09-10T03:47:29Z) - Specializing Multilingual Language Models: An Empirical Study [50.7526245872855]
事前訓練された多言語モデルからの文脈化語表現は、自然言語タスクに対処するデファクトスタンダードとなっている。
これらのモデルではまれに、あるいは一度も見られない言語では、そのようなモデルを直接使用すると、最適な表現やデータの使用につながることが多い。
論文 参考訳(メタデータ) (2021-06-16T18:13:55Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Evaluating Cross-Lingual Transfer Learning Approaches in Multilingual
Conversational Agent Models [1.52292571922932]
自然言語理解(NLU)モデルのための汎用多言語モデルフレームワークを提案する。
これらの多言語モデルが,言語固有のテストデータにまたがる単言語モデルと比較して,同等あるいは優れた性能に到達できることを示す。
論文 参考訳(メタデータ) (2020-12-07T17:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。