Probabilistic Theories and Reconstructions of Quantum Theory (Les
Houches 2019 lecture notes)
- URL: http://arxiv.org/abs/2011.01286v4
- Date: Tue, 30 Mar 2021 12:30:03 GMT
- Title: Probabilistic Theories and Reconstructions of Quantum Theory (Les
Houches 2019 lecture notes)
- Authors: Markus P. Mueller
- Abstract summary: These lecture notes provide a basic introduction to the framework of generalized probabilistic theories (GPTs)
I present two conceivable phenomena beyond quantum: superstrong nonlocality and higher-order interference.
I summarize a reconstruction of quantum theory from the principles of Tomographic Locality, Continuous Reversibility, and the Subspace Axiom.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These lecture notes provide a basic introduction to the framework of
generalized probabilistic theories (GPTs) and a sketch of a reconstruction of
quantum theory (QT) from simple operational principles. To build some intuition
for how physics could be even more general than quantum, I present two
conceivable phenomena beyond QT: superstrong nonlocality and higher-order
interference. Then I introduce the framework of GPTs, generalizing both quantum
and classical probability theory. Finally, I summarize a reconstruction of QT
from the principles of Tomographic Locality, Continuous Reversibility, and the
Subspace Axiom. In particular, I show why a quantum bit is described by a Bloch
ball, why it is three-dimensional, and how one obtains the complex numbers and
operators of the usual representation of QT.
Related papers
- Quantum Probability Geometrically Realized in Projective Space [0.0]
This paper aims to pass all quantum probability formulas to the projective space associated to the complex Hilbert space of a given quantum system.
The upshot is that quantum theory is the probability theory of projective subspaces, or equivalently, of quantum events.
arXiv Detail & Related papers (2024-10-23T20:29:15Z) - Universal quantum computation using Ising anyons from a non-semisimple Topological Quantum Field Theory [0.058331173224054456]
We propose a framework for topological quantum computation using newly discovered non-semisimple analogs of topological quantum field theories in 2+1 dimensions.
We show that the non-semisimple theory introduces new anyon types that extend the Ising framework.
arXiv Detail & Related papers (2024-10-18T21:03:07Z) - Stochastic Processes: From Classical to Quantum [7.034466417392574]
We start with some reminders from the theory of classical processes.
We then provide a brief overview of quantum mechanics and quantum field theory.
We introduce quantum processes on a boson Fock space and their calculus.
arXiv Detail & Related papers (2024-07-04T15:26:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Characterization of the probabilistic models that can be embedded in
quantum theory [0.0]
We show that only classical and standard quantum theory with superselection rules can arise from a physical decoherence map.
Our results have significant consequences for some experimental tests of quantum theory, by clarifying how they could (or could not) falsify it.
arXiv Detail & Related papers (2020-04-13T18:09:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.