Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks
- URL: http://arxiv.org/abs/2012.06294v2
- Date: Thu, 24 Mar 2022 14:30:15 GMT
- Title: Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks
- Authors: Kaonan Micadei, John P. S. Peterson, Alexandre M. Souza, Roberto S.
Sarthour, Ivan S. Oliveira, Gabriel T. Landi, Roberto M. Serra, Eric Lutz
- Abstract summary: Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
- Score: 48.7576911714538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluctuation theorems are fundamental extensions of the second law of
thermodynamics for small systems. Their general validity arbitrarily far from
equilibrium makes them invaluable in nonequilibrium physics. So far,
experimental studies of quantum fluctuation relations do not account for
quantum correlations and quantum coherence, two essential quantum properties.
We here experimentally verify detailed and integral fully quantum fluctuation
theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a
nuclear magnetic resonance setup. We confirm, in particular, individual
integral fluctuation relations for quantum correlations and quantum coherence,
as well as for the sum of all quantum contributions. These refined formulations
of the second law are important for the investigation of fully quantum features
in nonequilibrium thermodynamics.
Related papers
- Quantum Computing Universal Thermalization Dynamics in a (2+1)D Lattice Gauge Theory [2.483317204290323]
We study the role of entanglement in the thermalization dynamics of a $Z$ lattice gauge theory in 2+1time dimensions.
Our work establishes quantum computers as robust tools for studying universal features of thermalization in complex many-body systems.
arXiv Detail & Related papers (2024-07-31T18:00:01Z) - Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Reconstructing the spatial structure of quantum correlations in materials [0.0]
Quantum correlations are a fundamental property of many-body states.
Yet they remain elusive, hindering certification of genuine quantum materials.
We show that momentumdependent dynamical behavior via neutron scattering enables a general family of quantum correlation.
arXiv Detail & Related papers (2023-06-20T17:55:09Z) - Exchange fluctuation theorems for strongly interacting quantum pumps [0.0]
We derive a general quantum exchange fluctuation theorem for multipartite systems with arbitrary coupling strengths.
The resulting second law of thermodynamics is tighter than the conventional Clausius inequality.
arXiv Detail & Related papers (2022-09-26T18:01:59Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.