MACE: Model Agnostic Concept Extractor for Explaining Image
Classification Networks
- URL: http://arxiv.org/abs/2011.01472v1
- Date: Tue, 3 Nov 2020 04:40:49 GMT
- Title: MACE: Model Agnostic Concept Extractor for Explaining Image
Classification Networks
- Authors: Ashish Kumar, Karan Sehgal, Prerna Garg, Vidhya Kamakshi, and
Narayanan C Krishnan
- Abstract summary: We propose MACE: a Model Agnostic Concept Extractor, which can explain the working of a convolutional network through smaller concepts.
We validate our framework using VGG16 and ResNet50 CNN architectures, and on datasets like Animals With Attributes 2 (AWA2) and Places365.
- Score: 10.06397994266945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional networks have been quite successful at various image
classification tasks. The current methods to explain the predictions of a
pre-trained model rely on gradient information, often resulting in saliency
maps that focus on the foreground object as a whole. However, humans typically
reason by dissecting an image and pointing out the presence of smaller
concepts. The final output is often an aggregation of the presence or absence
of these smaller concepts. In this work, we propose MACE: a Model Agnostic
Concept Extractor, which can explain the working of a convolutional network
through smaller concepts. The MACE framework dissects the feature maps
generated by a convolution network for an image to extract concept based
prototypical explanations. Further, it estimates the relevance of the extracted
concepts to the pre-trained model's predictions, a critical aspect required for
explaining the individual class predictions, missing in existing approaches. We
validate our framework using VGG16 and ResNet50 CNN architectures, and on
datasets like Animals With Attributes 2 (AWA2) and Places365. Our experiments
demonstrate that the concepts extracted by the MACE framework increase the
human interpretability of the explanations, and are faithful to the underlying
pre-trained black-box model.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
We propose a novel method that relies on mapping the concept features to the latent space of a pretrained generative model.
We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts.
arXiv Detail & Related papers (2024-07-01T14:39:41Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
We propose an approach to concept explanations that satisfy three natural axioms: linearity, recursivity, and similarity.
We then establish connections with previous concept explanation methods, offering insight into their varying semantic meanings.
arXiv Detail & Related papers (2024-01-12T20:53:35Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
We find evidence for convergence, where removing the 10,000 top attributing images for a concept and retraining the model does not change the location of the concept in the network.
This suggests that the features that inform the development of a concept are spread in a more diffuse manner across its exemplars, implying robustness in concept formation.
arXiv Detail & Related papers (2023-10-04T20:26:59Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
Post-hoc analysis can only discover the patterns or rules that naturally exist in models.
We proactively instill knowledge to alter the representation of human-understandable concepts in hidden layers.
Our method improves model interpretability, showing better disentanglement of semantic concepts, without negatively affecting model classification performance.
arXiv Detail & Related papers (2023-07-10T04:54:05Z) - Concept Activation Regions: A Generalized Framework For Concept-Based
Explanations [95.94432031144716]
Existing methods assume that the examples illustrating a concept are mapped in a fixed direction of the deep neural network's latent space.
In this work, we propose allowing concept examples to be scattered across different clusters in the DNN's latent space.
This concept activation region (CAR) formalism yields global concept-based explanations and local concept-based feature importance.
arXiv Detail & Related papers (2022-09-22T17:59:03Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - ConceptDistil: Model-Agnostic Distillation of Concept Explanations [4.462334751640166]
Concept-based explanations aims to fill the model interpretability gap for non-technical humans-in-the-loop.
We propose ConceptDistil, a method to bring concept explanations to any black-box classifier using knowledge distillation.
We validate ConceptDistil in a real world use-case, showing that it is able to optimize both tasks.
arXiv Detail & Related papers (2022-05-07T08:58:54Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.