Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
- URL: http://arxiv.org/abs/2502.20134v3
- Date: Wed, 09 Apr 2025 08:14:02 GMT
- Title: Show and Tell: Visually Explainable Deep Neural Nets via Spatially-Aware Concept Bottleneck Models
- Authors: Itay Benou, Tammy Riklin-Raviv,
- Abstract summary: We present a unified framework for transforming any vision neural network into a spatially and conceptually interpretable model.<n>We name this method "Spatially-Aware and Label-Free Concept Bottleneck Model" (SALF-CBM)
- Score: 5.985204759362746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern deep neural networks have now reached human-level performance across a variety of tasks. However, unlike humans they lack the ability to explain their decisions by showing where and telling what concepts guided them. In this work, we present a unified framework for transforming any vision neural network into a spatially and conceptually interpretable model. We introduce a spatially-aware concept bottleneck layer that projects "black-box" features of pre-trained backbone models into interpretable concept maps, without requiring human labels. By training a classification layer over this bottleneck, we obtain a self-explaining model that articulates which concepts most influenced its prediction, along with heatmaps that ground them in the input image. Accordingly, we name this method "Spatially-Aware and Label-Free Concept Bottleneck Model" (SALF-CBM). Our results show that the proposed SALF-CBM: (1) Outperforms non-spatial CBM methods, as well as the original backbone, on a variety of classification tasks; (2) Produces high-quality spatial explanations, outperforming widely used heatmap-based methods on a zero-shot segmentation task; (3) Facilitates model exploration and debugging, enabling users to query specific image regions and refine the model's decisions by locally editing its concept maps.
Related papers
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
We present an extension to the method of concept detection, named emphconcept backpropagation, which provides a way of analysing how the information representing a given concept is internalised in a given neural network model.
arXiv Detail & Related papers (2023-07-24T08:21:13Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
Post-hoc analysis can only discover the patterns or rules that naturally exist in models.
We proactively instill knowledge to alter the representation of human-understandable concepts in hidden layers.
Our method improves model interpretability, showing better disentanglement of semantic concepts, without negatively affecting model classification performance.
arXiv Detail & Related papers (2023-07-10T04:54:05Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
We develop a novel visual explanation method called Shap-CAM based on class activation mapping.
We demonstrate that Shap-CAM achieves better visual performance and fairness for interpreting the decision making process.
arXiv Detail & Related papers (2022-08-07T00:59:23Z) - Concept Bottleneck Model with Additional Unsupervised Concepts [0.5939410304994348]
We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
arXiv Detail & Related papers (2022-02-03T08:30:51Z) - Deriving Explanation of Deep Visual Saliency Models [6.808418311272862]
We develop a technique to derive explainable saliency models from their corresponding deep neural architecture based saliency models.
We consider two state-of-the-art deep saliency models, namely UNISAL and MSI-Net for our interpretation.
We also build our own deep saliency model named cross-concatenated multi-scale residual block based network (CMRNet) for saliency prediction.
arXiv Detail & Related papers (2021-09-08T12:22:32Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - MACE: Model Agnostic Concept Extractor for Explaining Image
Classification Networks [10.06397994266945]
We propose MACE: a Model Agnostic Concept Extractor, which can explain the working of a convolutional network through smaller concepts.
We validate our framework using VGG16 and ResNet50 CNN architectures, and on datasets like Animals With Attributes 2 (AWA2) and Places365.
arXiv Detail & Related papers (2020-11-03T04:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.