論文の概要: Wheat Crop Yield Prediction Using Deep LSTM Model
- arxiv url: http://arxiv.org/abs/2011.01498v1
- Date: Tue, 3 Nov 2020 06:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:09:26.769089
- Title: Wheat Crop Yield Prediction Using Deep LSTM Model
- Title(参考訳): 深部LSTMモデルによる小麦作物収量予測
- Authors: Sagarika Sharma, Sujit Rai, Narayanan C. Krishnan
- Abstract要約: 本稿では,衛星画像から農作物の収穫量を予測するための信頼性が高く安価な方法を提案する。
提案手法は,手作りの特徴を抽出することなく,生の衛星画像を直接処理する。
- 参考スコア(独自算出の注目度): 4.2755847332268235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An in-season early crop yield forecast before harvest can benefit the farmers
to improve the production and enable various agencies to devise plans
accordingly. We introduce a reliable and inexpensive method to predict crop
yields from publicly available satellite imagery. The proposed method works
directly on raw satellite imagery without the need to extract any hand-crafted
features or perform dimensionality reduction on the images. The approach
implicitly models the relevance of the different steps in the growing season
and the various bands in the satellite imagery. We evaluate the proposed
approach on tehsil (block) level wheat predictions across several states in
India and demonstrate that it outperforms existing methods by over 50\%. We
also show that incorporating additional contextual information such as the
location of farmlands, water bodies, and urban areas helps in improving the
yield estimates.
- Abstract(参考訳): 収穫前の早期収量予測は、農家が生産を改善するのに役立ち、様々な機関がそれに従って計画を立てることができる。
衛星画像から収穫量を予測するための信頼性が高く安価な手法を提案する。
提案手法は,手作りの特徴を抽出したり,画像の次元的低減を行うことなく,衛星画像を直接処理する。
このアプローチは、成長期の異なるステップと衛星画像の様々なバンドの関係を暗黙的にモデル化する。
インドのいくつかの州におけるテフシル(ブロック)レベルのコムギ予測に対する提案手法の評価を行い,既存手法を50%以上上回る性能を示した。
また, 農地, 水域, 都市部の位置などの付加的な文脈情報の導入が, 収量推定の改善に有効であることを示す。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Generative weather for improved crop model simulations [0.0]
本稿では,長期気象予報のための生成モデルを構築するための新しい手法を提案する。
その結果,従来の方法よりも顕著な改善が見られた。
個別の作物モデル作成者がこの問題にこの手法を適用し始めるためには、技術的詳細を慎重に説明する。
論文 参考訳(メタデータ) (2024-03-31T02:03:28Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Combining Satellite and Weather Data for Crop Type Mapping: An Inverse
Modelling Approach [23.23933321161625]
天気(デイメット)と衛星画像(センチネル-2)を組み合わせて正確な作物地図を生成する深層学習モデルを提案する。
提案手法は,スペクトル画像のみに依存する既存のアルゴリズムよりも大幅に改善されていることを示す。
この結果と作物の表現学を関連づけることで,WSTATTが作物の成長の物理的特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2024-01-29T04:15:22Z) - Can SAM recognize crops? Quantifying the zero-shot performance of a
semantic segmentation foundation model on generating crop-type maps using
satellite imagery for precision agriculture [4.825257766966091]
クロップ型マップは意思決定支援ツールの重要な情報である。
本稿では,Meta AIのSegment Anything Model(SAM)の作物マップ予測機能について検討する。
SAMは最大3チャンネルの入力に制限されており、ゼロショットの使用は本質的にクラスに依存しない。
論文 参考訳(メタデータ) (2023-11-25T23:40:09Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Estimating crop yields with remote sensing and deep learning [0.2492060267829796]
本研究では,5種類の作物に対して,プレシーズンおよびインシーズン予測を行うことができる深層学習モデルを提案する。
本モデルでは、収穫カレンダー、リモートセンシングデータ、天気予報情報を用いて正確な収量推定を行う。
論文 参考訳(メタデータ) (2020-07-21T15:09:11Z) - UAV and Machine Learning Based Refinement of a Satellite-Driven
Vegetation Index for Precision Agriculture [0.8399688944263843]
本稿では,深層学習技術に基づく新しい衛星画像補正フレームワークを提案する。
無人航空機(UAV)が取得した高解像度画像から得られる情報を適切に活用する。
セラルンガ・ダルバ (Serralunga d'Alba) のブドウ園は、検証のためのケーススタディとして選ばれた。
論文 参考訳(メタデータ) (2020-04-29T18:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。