論文の概要: Generating Diverse Agricultural Data for Vision-Based Farming Applications
- arxiv url: http://arxiv.org/abs/2403.18351v1
- Date: Wed, 27 Mar 2024 08:42:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 17:47:16.976368
- Title: Generating Diverse Agricultural Data for Vision-Based Farming Applications
- Title(参考訳): ビジョン型農業用多元農業データの作成
- Authors: Mikolaj Cieslak, Umabharathi Govindarajan, Alejandro Garcia, Anuradha Chandrashekar, Torsten Hädrich, Aleksander Mendoza-Drosik, Dominik L. Michels, Sören Pirk, Chia-Chun Fu, Wojciech Pałubicki,
- Abstract要約: このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
- 参考スコア(独自算出の注目度): 74.79409721178489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a specialized procedural model for generating synthetic agricultural scenes, focusing on soybean crops, along with various weeds. This model is capable of simulating distinct growth stages of these plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions. The integration of real-world textures and environmental factors into the procedural generation process enhances the photorealism and applicability of the synthetic data. Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture, such as semantic segmentation for autonomous weed control. We validate our model's effectiveness by comparing the synthetic data against real agricultural images, demonstrating its potential to significantly augment training data for machine learning models in agriculture. This approach not only provides a cost-effective solution for generating high-quality, diverse data but also addresses specific needs in agricultural vision tasks that are not fully covered by general-purpose models.
- Abstract(参考訳): 各種雑草とともに大豆の栽培に焦点をあてて, 合成農業シーンを創出するための特別な手続きモデルを提案する。
このモデルは、これらの植物の異なる成長段階、多様な土壌条件、および様々な照明条件下でのランダムなフィールド配置をシミュレートすることができる。
実際のテクスチャと環境因子を手続き生成プロセスに統合することで、合成データのフォトリアリズムと適用性が向上する。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、自律雑草制御のためのセマンティックセグメンテーションのような精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
農業における機械学習モデルのトレーニングデータを大幅に増強する可能性を実証し, 実際の農業画像と比較することにより, モデルの有効性を検証した。
このアプローチは、高品質で多様なデータを生成するためのコスト効率の良いソリューションを提供するだけでなく、汎用モデルで完全にカバーされていない農業ビジョンタスクの特定のニーズにも対処する。
関連論文リスト
- Semi-Self-Supervised Domain Adaptation: Developing Deep Learning Models with Limited Annotated Data for Wheat Head Segmentation [0.10923877073891444]
本稿では,確率的拡散過程を持つ深層畳み込みニューラルネットワークに基づく半自己制御型ドメイン適応手法を提案する。
合成画像-マスク対と無注釈画像の両方を利用する2分岐畳み込みエンコーダ・デコーダモデルアーキテクチャを開発した。
提案されたモデルは、内部テストデータセットで80.7%のDiceスコア、外部テストセットで64.8%のDiceスコアを達成した。
論文 参考訳(メタデータ) (2024-05-12T04:35:49Z) - Improved Crop and Weed Detection with Diverse Data Ensemble Learning [18.490612639895893]
現代の農業は、現場における作物や雑草の正確な検出、地域化、定量化を必要とする、サイト・スペクティブ・ファーム・マネジメントの実践に大きく依存している。
既存の手法は、制御されていない畑の条件を考慮に入れた農業データを増強し、合成する。
我々は,他の作物や雑草に特有のデータを活用することを提案する。
論文 参考訳(メタデータ) (2023-10-02T10:05:30Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
2014年にコンピュータビジョンコミュニティで発明されたGAN(Generative Adversarial Network)は、優れたデータ表現を学習できる新しいアプローチスイートを提供する。
本稿では, GAN アーキテクチャの進化を概観するとともに, 農業への導入を体系的に検討する。
論文 参考訳(メタデータ) (2022-04-10T15:33:05Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Multi-Spectral Image Synthesis for Crop/Weed Segmentation in Precision
Farming [3.4788711710826083]
本稿では, 精密農業における作物・雑草の分枝化問題に適用し, 共通データ増分法に関する代替手法を提案する。
我々は、最も関連性の高いオブジェクトクラス(作物や雑草)を合成されたクラスに置き換えることで、半人工的なサンプルを作成する。
RGBデータに加えて、近赤外(NIR)情報も考慮し、4つのチャネルマルチスペクトル合成画像を生成する。
論文 参考訳(メタデータ) (2020-09-12T08:49:36Z) - Crop Knowledge Discovery Based on Agricultural Big Data Integration [2.597676155371155]
農業データは、IoT(Internet of Thing)、センサー、衛星、気象観測所、ロボット、農業機器、農業実験所、農家、政府機関、農業機関など、さまざまなソースを通じて生成される。
本稿では,他のデータセットやビッグデータモデルを組み込むのに十分なフレキシブルなコンステレーションスキーマを用いた農業データ統合手法を提案する。
論文 参考訳(メタデータ) (2020-03-11T00:13:17Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。