Estimating decision tree learnability with polylogarithmic sample
complexity
- URL: http://arxiv.org/abs/2011.01584v1
- Date: Tue, 3 Nov 2020 09:26:27 GMT
- Title: Estimating decision tree learnability with polylogarithmic sample
complexity
- Authors: Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- Abstract summary: We show that top-down decision tree learnings are amenable to highly efficient learnability estimation.
We show how the label $T(xstar$)$ of the decision tree hypothesis $T$ can be computed with polylogarithmically many labeled examples.
- Score: 16.832966312395126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that top-down decision tree learning heuristics are amenable to
highly efficient learnability estimation: for monotone target functions, the
error of the decision tree hypothesis constructed by these heuristics can be
estimated with polylogarithmically many labeled examples, exponentially smaller
than the number necessary to run these heuristics, and indeed, exponentially
smaller than information-theoretic minimum required to learn a good decision
tree. This adds to a small but growing list of fundamental learning algorithms
that have been shown to be amenable to learnability estimation.
En route to this result, we design and analyze sample-efficient minibatch
versions of top-down decision tree learning heuristics and show that they
achieve the same provable guarantees as the full-batch versions. We further
give "active local" versions of these heuristics: given a test point $x^\star$,
we show how the label $T(x^\star)$ of the decision tree hypothesis $T$ can be
computed with polylogarithmically many labeled examples, exponentially smaller
than the number necessary to learn $T$.
Related papers
- Terminating Differentiable Tree Experts [77.2443883991608]
We propose a neuro-symbolic Differentiable Tree Machine that learns tree operations using a combination of transformers and Representation Products.
We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts.
We additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically.
arXiv Detail & Related papers (2024-07-02T08:45:38Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Learning accurate and interpretable decision trees [27.203303726977616]
We develop approaches to design decision tree learning algorithms given repeated access to data from the same domain.
We study the sample complexity of tuning prior parameters in Bayesian decision tree learning, and extend our results to decision tree regression.
We also study the interpretability of the learned decision trees and introduce a data-driven approach for optimizing the explainability versus accuracy trade-off using decision trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Shallow decision trees for explainable $k$-means clustering [1.2891210250935146]
We propose an efficient algorithm that takes into account metrics related to the depths of the leaves in a decision tree.
In experiments on 16 datasets, our algorithm yields better results than decision-tree clustering algorithms.
arXiv Detail & Related papers (2021-12-29T18:22:28Z) - Active-LATHE: An Active Learning Algorithm for Boosting the Error
Exponent for Learning Homogeneous Ising Trees [75.93186954061943]
We design and analyze an algorithm that boosts the error exponent by at least 40% when $rho$ is at least $0.8$.
Our analysis hinges on judiciously exploiting the minute but detectable statistical variation of the samples to allocate more data to parts of the graph.
arXiv Detail & Related papers (2021-10-27T10:45:21Z) - Robustifying Algorithms of Learning Latent Trees with Vector Variables [92.18777020401484]
We present the sample complexities of Recursive Grouping (RG) and Chow-Liu Recursive Grouping (CLRG)
We robustify RG, CLRG, Neighbor Joining (NJ) and Spectral NJ (SNJ) by using the truncated inner product.
We derive the first known instance-dependent impossibility result for structure learning of latent trees.
arXiv Detail & Related papers (2021-06-02T01:37:52Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z) - Dive into Decision Trees and Forests: A Theoretical Demonstration [0.0]
Decision trees use the strategy of "divide-and-conquer" to divide a complex problem on the dependency between input features and labels into smaller ones.
Recent advances have greatly improved their performance in computational advertising, recommender system, information retrieval, etc.
arXiv Detail & Related papers (2021-01-20T16:47:59Z) - Sample-Optimal and Efficient Learning of Tree Ising models [24.201827888085944]
We show that $n$-variable tree-structured Ising models can be learned computationally-efficiently to within total variation distance $epsilon$ from an optimal $O(n ln n/epsilon2)$ samples.
Our guarantees do not follow from known results for the Chow-Liu algorithm.
arXiv Detail & Related papers (2020-10-28T10:17:48Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.