論文の概要: HeLayers: A Tile Tensors Framework for Large Neural Networks on
Encrypted Data
- arxiv url: http://arxiv.org/abs/2011.01805v2
- Date: Tue, 7 Dec 2021 12:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 06:15:08.103419
- Title: HeLayers: A Tile Tensors Framework for Large Neural Networks on
Encrypted Data
- Title(参考訳): HeLayers: 暗号化データによる大規模ニューラルネットワークのためのタイルテンソルフレームワーク
- Authors: Ehud Aharoni (1), Allon Adir (1), Moran Baruch (1), Nir Drucker (1),
Gilad Ezov (1), Ariel Farkash (1), Lev Greenberg (1), Ramy Masalha (1), Guy
Moshkowich (1), Dov Murik (1), Hayim Shaul (1) and Omri Soceanu (1) ((1) IBM
Research)
- Abstract要約: ホモモルフィック暗号化(HE)は、暗号化されたデータに対する計算を可能にする。
ユーザのためのパッケージ化決定を抽象化する,シンプルで直感的なフレームワークを提案する。
本稿では、その基盤となるデータ構造を説明し、2次元演算を行うための新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy-preserving solutions enable companies to offload confidential data to
third-party services while fulfilling their government regulations. To
accomplish this, they leverage various cryptographic techniques such as
Homomorphic Encryption (HE), which allows performing computation on encrypted
data. Most HE schemes work in a SIMD fashion, and the data packing method can
dramatically affect the running time and memory costs. Finding a packing method
that leads to an optimal performant implementation is a hard task.
We present a simple and intuitive framework that abstracts the packing
decision for the user. We explain its underlying data structures and optimizer,
and propose a novel algorithm for performing 2D convolution operations. We used
this framework to implement an HE-friendly version of AlexNet, which runs in
three minutes, several orders of magnitude faster than other state-of-the-art
solutions that only use HE.
- Abstract(参考訳): プライバシー保護ソリューションは、企業が政府の規制を満たしながら、機密データをサードパーティサービスにオフロードできるようにする。
これを実現するために、同型暗号化(HE)のような様々な暗号化技術を活用し、暗号化データ上での計算を可能にする。
ほとんどのHEスキームはSIMD方式で動作し、データパッキング方式は実行時間とメモリコストに劇的に影響を与える。
最適なパフォーマンスの実装につながるパッキング方法を見つけることは難しい作業である。
ユーザのためのパッケージ決定を抽象化する,シンプルで直感的なフレームワークを提案する。
基礎となるデータ構造とオプティマイザを説明し、2次元畳み込み演算を行う新しいアルゴリズムを提案する。
私たちはこのフレームワークを使って、3分で動くheフレンドリーなバージョンのalexnetを実装しました。
関連論文リスト
- At Least Factor-of-Two Optimization for RWLE-Based Homomorphic Encryption [0.0]
ホモモルフィック暗号化(HE)は、復号化を必要とせずに、暗号化データの特定の操作をサポートする。
HEスキームには、データ集約的なワークロードを妨げるような、非自明な計算オーバーヘッドが伴います。
我々は、Zincと呼ぶ暗号化方式を提案し、複数のキャッシュ処理を禁止し、単一のスカラー加算で置き換える。
論文 参考訳(メタデータ) (2024-08-14T05:42:35Z) - Toward Practical Privacy-Preserving Convolutional Neural Networks Exploiting Fully Homomorphic Encryption [11.706881389387242]
準同型暗号化(FHE)は、プライベート推論(PI)を実現するための実行可能なアプローチである
FHEのCNNの実装は、主に計算とメモリのオーバーヘッドが大きいため、大きなハードルに直面している。
本稿では、GPU/ASICアクセラレーション、効率的なアクティベーション機能、最適化されたパッキングスキームを含む最適化セットを提案する。
論文 参考訳(メタデータ) (2023-10-25T10:24:35Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE)は、大規模な3Dポイントクラウドでの探索が難しい。
我々は,周囲のコンテキストを自動的にマージするためのtextbfGenerative textbfDecoder for MAE (GD-MAE)を提案する。
提案手法の有効性を, KITTI と ONCE の2つの大規模ベンチマークで実証した。
論文 参考訳(メタデータ) (2022-12-06T14:32:55Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
我々はスケッチを利用した新しい分散Adam型アルゴリズムのクラス(例:SketchedAMSGrad)を提案する。
我々の新しいアルゴリズムは、反復毎に$O(frac1sqrtnT + frac1(k/d)2 T)$の高速収束率を$O(k log(d))$の通信コストで達成する。
論文 参考訳(メタデータ) (2022-10-14T01:42:05Z) - CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph
Convolutional Network Inference [12.03953896181613]
クラウドベースのグラフ畳み込みネットワーク(GCN)は、多くのプライバシに敏感なアプリケーションで大きな成功と可能性を示している。
クラウド上での推論精度とパフォーマンスは高いが、GCN推論におけるデータのプライバシの維持については、まだ明らかにされていない。
本稿では,この手法を最初に試行し,同型暗号(HE)に基づくGCN推論フレームワークであるtextitCryptoGCN$-を開発する。
論文 参考訳(メタデータ) (2022-09-24T02:20:54Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
トランスフォーマーモデルのプライバシ保護推論は、クラウドサービスユーザの要求に基づいています。
我々は、事前訓練されたモデルのプライバシ保存推論を可能にするトランスフォーマーの近似アプローチである$textitTHE-X$を紹介した。
論文 参考訳(メタデータ) (2022-06-01T03:49:18Z) - Efficient Encrypted Inference on Ensembles of Decision Trees [21.570003967858355]
データプライバシーに関する懸念は、しばしば機密個人データのクラウドベースの機械学習サービスの使用を妨げます。
複雑な決定木アンサンブルから抽出した知識を浅層ニューラルネットワークに伝達する枠組みを提案する。
当社のシステムは高度にスケーラブルで,バッチ暗号化された(134ビットのセキュリティ)データに対して,ミリ秒のアモートタイムで効率的な推論を行うことができる。
論文 参考訳(メタデータ) (2021-03-05T01:06:30Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
トラディショナル・エンコーダ・デコーダに基づく手法は, より小さな構造を検出でき, 境界領域を正確に分割できない。
本稿では,(1)入力の細部と正確なエッジを捉えることを学ぶ完全畳み込みネットワークKite-Netと,(2)高レベルの特徴を学習するU-Netの2つの枝を持つKiU-Netを提案する。
提案手法は,より少ないパラメータとより高速な収束の利点により,最近のすべての手法と比較して性能が向上する。
論文 参考訳(メタデータ) (2020-10-04T19:23:33Z) - New Oracle-Efficient Algorithms for Private Synthetic Data Release [52.33506193761153]
微分プライベートな合成データを構築するための3つの新しいアルゴリズムを提案する。
アルゴリズムは最悪の場合でも差分プライバシーを満たす。
現状の手法である高次元行列機構 citeMcKennaMHM18 と比較すると,我々のアルゴリズムは大規模作業負荷の精度が向上する。
論文 参考訳(メタデータ) (2020-07-10T15:46:05Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。