Minimax Pareto Fairness: A Multi Objective Perspective
- URL: http://arxiv.org/abs/2011.01821v1
- Date: Tue, 3 Nov 2020 16:21:53 GMT
- Title: Minimax Pareto Fairness: A Multi Objective Perspective
- Authors: Natalia Martinez, Martin Bertran, Guillermo Sapiro
- Abstract summary: Group fairness is a multi-objective optimization problem, where each sensitive group risk is a separate objective.
We provide a simple algorithm compatible with deep neural networks to satisfy these constraints.
We test the proposed methodology on real case-studies of predicting income, ICU patient mortality, skin lesions classification, and assessing credit risk.
- Score: 24.600419295290504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we formulate and formally characterize group fairness as a
multi-objective optimization problem, where each sensitive group risk is a
separate objective. We propose a fairness criterion where a classifier achieves
minimax risk and is Pareto-efficient w.r.t. all groups, avoiding unnecessary
harm, and can lead to the best zero-gap model if policy dictates so. We provide
a simple optimization algorithm compatible with deep neural networks to satisfy
these constraints. Since our method does not require test-time access to
sensitive attributes, it can be applied to reduce worst-case classification
errors between outcomes in unbalanced classification problems. We test the
proposed methodology on real case-studies of predicting income, ICU patient
mortality, skin lesions classification, and assessing credit risk,
demonstrating how our framework compares favorably to other approaches.
Related papers
- Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness [14.421493372559762]
We quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints.
We propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk.
arXiv Detail & Related papers (2024-10-21T20:04:17Z) - Federated Fairness without Access to Sensitive Groups [12.888927461513472]
Current approaches to group fairness in federated learning assume the existence of predefined and labeled sensitive groups during training.
We propose a new approach to guarantee group fairness that does not rely on any predefined definition of sensitive groups or additional labels.
arXiv Detail & Related papers (2024-02-22T19:24:59Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
This paper presents a novel universal method of CFAO, which holds an unbiased estimator of the classification risk for arbitrary losses.
Our proposed method not only guarantees the risk consistency due to the unbiased risk estimator but also can be compatible with arbitrary losses.
arXiv Detail & Related papers (2023-06-20T07:22:01Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Group Fairness with Uncertainty in Sensitive Attributes [34.608332397776245]
A fair predictive model is crucial to mitigate biased decisions against minority groups in high-stakes applications.
We propose a bootstrap-based algorithm that achieves the target level of fairness despite the uncertainty in sensitive attributes.
Our algorithm is applicable to both discrete and continuous sensitive attributes and is effective in real-world classification and regression tasks.
arXiv Detail & Related papers (2023-02-16T04:33:00Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Minimax Group Fairness: Algorithms and Experiments [18.561824632836405]
We provide provably convergent oracle-efficient learning algorithms for minimax group fairness.
Our algorithms apply to both regression and classification settings.
We show empirical cases in which minimax fairness is strictly and strongly preferable to equal outcome notions.
arXiv Detail & Related papers (2020-11-05T21:42:56Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
One-sided prediction (OSP) based relaxation yields an SC scheme that attains near-optimal coverage in the practically relevant high target accuracy regime.
We theoretically derive bounds generalization for SC and OSP, and empirically we show that our scheme strongly outperforms state of the art methods in coverage at small error levels.
arXiv Detail & Related papers (2020-10-15T16:14:27Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
This paper introduces fast approximations of the independence, separation and sufficiency group fairness criteria for regression models.
It uses such approximations as regularisers to enforce fairness within a regularised risk minimisation framework.
Experiments in real-world datasets indicate that in spite of its superior computational efficiency our algorithm still displays state-of-the-art accuracy/fairness tradeoffs.
arXiv Detail & Related papers (2020-02-14T08:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.