Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness
- URL: http://arxiv.org/abs/2410.16477v2
- Date: Thu, 07 Nov 2024 02:46:19 GMT
- Title: Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness
- Authors: Xiaotian Hou, Linjun Zhang,
- Abstract summary: We quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints.
We propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk.
- Score: 14.421493372559762
- License:
- Abstract: Algorithmic fairness in machine learning has recently garnered significant attention. However, two pressing challenges remain: (1) The fairness guarantees of existing fair classification methods often rely on specific data distribution assumptions and large sample sizes, which can lead to fairness violations when the sample size is moderate-a common situation in practice. (2) Due to legal and societal considerations, using sensitive group attributes during decision-making (referred to as the group-blind setting) may not always be feasible. In this work, we quantify the impact of enforcing algorithmic fairness and group-blindness in binary classification under group fairness constraints. Specifically, we propose a unified framework for fair classification that provides distribution-free and finite-sample fairness guarantees with controlled excess risk. This framework is applicable to various group fairness notions in both group-aware and group-blind scenarios. Furthermore, we establish a minimax lower bound on the excess risk, showing the minimax optimality of our proposed algorithm up to logarithmic factors. Through extensive simulation studies and real data analysis, we further demonstrate the superior performance of our algorithm compared to existing methods, and provide empirical support for our theoretical findings.
Related papers
- Distribution-Free Fair Federated Learning with Small Samples [54.63321245634712]
FedFaiREE is a post-processing algorithm developed specifically for distribution-free fair learning in decentralized settings with small samples.
We provide rigorous theoretical guarantees for both fairness and accuracy, and our experimental results further provide robust empirical validation for our proposed method.
arXiv Detail & Related papers (2024-02-25T17:37:53Z) - Federated Fairness without Access to Sensitive Groups [12.888927461513472]
Current approaches to group fairness in federated learning assume the existence of predefined and labeled sensitive groups during training.
We propose a new approach to guarantee group fairness that does not rely on any predefined definition of sensitive groups or additional labels.
arXiv Detail & Related papers (2024-02-22T19:24:59Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - FaiREE: Fair Classification with Finite-Sample and Distribution-Free
Guarantee [40.10641140860374]
FaiREE is a fair classification algorithm that can satisfy group fairness constraints with finite-sample and distribution-free theoretical guarantees.
FaiREE is shown to have favorable performance over state-of-the-art algorithms.
arXiv Detail & Related papers (2022-11-28T05:16:20Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Learning to Generate Fair Clusters from Demonstrations [27.423983748614198]
We show how to identify the intended fairness constraint for a problem based on limited demonstrations from an expert.
We present an algorithm to identify the fairness metric from demonstrations and generate clusters using existing off-the-shelf clustering techniques.
We investigate how to generate interpretable solutions using our approach.
arXiv Detail & Related papers (2021-02-08T03:09:33Z) - Minimax Group Fairness: Algorithms and Experiments [18.561824632836405]
We provide provably convergent oracle-efficient learning algorithms for minimax group fairness.
Our algorithms apply to both regression and classification settings.
We show empirical cases in which minimax fairness is strictly and strongly preferable to equal outcome notions.
arXiv Detail & Related papers (2020-11-05T21:42:56Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Robust Optimization for Fairness with Noisy Protected Groups [85.13255550021495]
We study the consequences of naively relying on noisy protected group labels.
We introduce two new approaches using robust optimization.
We show that the robust approaches achieve better true group fairness guarantees than the naive approach.
arXiv Detail & Related papers (2020-02-21T14:58:37Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
This paper introduces fast approximations of the independence, separation and sufficiency group fairness criteria for regression models.
It uses such approximations as regularisers to enforce fairness within a regularised risk minimisation framework.
Experiments in real-world datasets indicate that in spite of its superior computational efficiency our algorithm still displays state-of-the-art accuracy/fairness tradeoffs.
arXiv Detail & Related papers (2020-02-14T08:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.