Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and
Finite-Time Performance
- URL: http://arxiv.org/abs/2011.01868v3
- Date: Tue, 23 Mar 2021 13:44:57 GMT
- Title: Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and
Finite-Time Performance
- Authors: Thinh T. Doan
- Abstract summary: We study the convergence and finite-time analysis of the nonlinear two-time-scale approximation.
In particular, we show that the method achieves a convergence in expectation at a rate $mathcalO (1/k2/3)$, where $k$ is the number of iterations.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-time-scale stochastic approximation, a generalized version of the popular
stochastic approximation, has found broad applications in many areas including
stochastic control, optimization, and machine learning. Despite its popularity,
theoretical guarantees of this method, especially its finite-time performance,
are mostly achieved for the linear case while the results for the nonlinear
counterpart are very sparse. Motivated by the classic control theory for
singularly perturbed systems, we study in this paper the asymptotic convergence
and finite-time analysis of the nonlinear two-time-scale stochastic
approximation. Under some fairly standard assumptions, we provide a formula
that characterizes the rate of convergence of the main iterates to the desired
solutions. In particular, we show that the method achieves a convergence in
expectation at a rate $\mathcal{O}(1/k^{2/3})$, where $k$ is the number of
iterations. The key idea in our analysis is to properly choose the two step
sizes to characterize the coupling between the fast and slow-time-scale
iterates.
Related papers
- Asymptotic Time-Uniform Inference for Parameters in Averaged Stochastic Approximation [23.89036529638614]
We study time-uniform statistical inference for parameters in approximation (SA)
We analyze the almost-sure convergence rates of the averaged iterates to a scaled sum of Gaussians in both linear and nonlinear SA problems.
arXiv Detail & Related papers (2024-10-19T10:27:26Z) - Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving $O(1/k)$ Finite-Sample Complexity [2.5382095320488665]
This paper proposes to develop a new variant of the two-time-scale monotone approximation to find the roots of two coupled nonlinear operators.
Our key idea is to leverage the classic Ruppert-Polyak averaging technique to dynamically estimate the operators through their samples.
The estimated values of these averaging steps will then be used in the two-time-scale approximation updates to find the desired solution.
arXiv Detail & Related papers (2024-01-23T13:44:15Z) - Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for
Solving Nonconvex Min-Max Problems [2.0305676256390934]
We characterize the finite-time performance of the continuous-time variant of simultaneous gradient descent-ascent algorithm.
Our results on the behavior of continuous-time algorithm may be used to enhance the convergence properties of its discrete-time counterpart.
arXiv Detail & Related papers (2021-12-17T15:51:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic
Approximation under Markovian Noise [2.0305676256390934]
We study the so-called two-time-scale approximation, a simulation-based approach for finding the roots of two coupled nonlinear operators.
In particular, we consider the scenario where the data in the method are generated by Markov processes, therefore, they are dependent.
Under some fairly standard assumptions on the operators and the Markov processes, we provide a formula that characterizes the convergence rate of the mean square errors generated by the method to zero.
arXiv Detail & Related papers (2021-04-04T15:19:19Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Stochastic Approximation with Markov Noise: Analysis and applications in
reinforcement learning [0.0]
We present for the first time an convergence analysis of two time-scale approximation driven by "controlled" Markov noise.
We analyze the behavior of our framework by relating it to limiting differential inclusions in both time scales.
We obtain the first informative error bounds on function approximation for the policy evaluation algorithm.
arXiv Detail & Related papers (2020-04-08T03:59:21Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
The article rigorously establishes why symplectic discretization schemes are important for momentum-based optimization algorithms.
It provides a characterization of algorithms that exhibit accelerated convergence.
arXiv Detail & Related papers (2020-02-28T00:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.