Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic
Approximation under Markovian Noise
- URL: http://arxiv.org/abs/2104.01627v1
- Date: Sun, 4 Apr 2021 15:19:19 GMT
- Title: Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic
Approximation under Markovian Noise
- Authors: Thinh T. Doan
- Abstract summary: We study the so-called two-time-scale approximation, a simulation-based approach for finding the roots of two coupled nonlinear operators.
In particular, we consider the scenario where the data in the method are generated by Markov processes, therefore, they are dependent.
Under some fairly standard assumptions on the operators and the Markov processes, we provide a formula that characterizes the convergence rate of the mean square errors generated by the method to zero.
- Score: 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the so-called two-time-scale stochastic approximation, a
simulation-based approach for finding the roots of two coupled nonlinear
operators. Our focus is to characterize its finite-time performance in a Markov
setting, which often arises in stochastic control and reinforcement learning
problems. In particular, we consider the scenario where the data in the method
are generated by Markov processes, therefore, they are dependent. Such
dependent data result to biased observations of the underlying operators. Under
some fairly standard assumptions on the operators and the Markov processes, we
provide a formula that characterizes the convergence rate of the mean square
errors generated by the method to zero. Our result shows that the method
achieves a convergence in expectation at a rate $\mathcal{O}(1/k^{2/3})$, where
$k$ is the number of iterations. Our analysis is mainly motivated by the
classic singular perturbation theory for studying the asymptotic convergence of
two-time-scale systems, that is, we consider a Lyapunov function that carefully
characterizes the coupling between the two iterates. In addition, we utilize
the geometric mixing time of the underlying Markov process to handle the bias
and dependence in the data. Our theoretical result complements for the existing
literature, where the rate of nonlinear two-time-scale stochastic approximation
under Markovian noise is unknown.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Stochastic-Constrained Stochastic Optimization with Markovian Data [2.1756081703276]
We study the setting where data samples are drawn from a Markov chain and thus are not independent and identically distributed.
We propose two variants of drift-plus-penalty; one is for the case when the mixing time of the underlying Markov chain is known.
Our algorithms apply to a more general setting of constrained online convex optimization where the sequence of constraint functions follows a Markov chain.
arXiv Detail & Related papers (2023-12-07T14:09:27Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
We study the problem of estimating the fixed point of a contractive operator defined on a separable Banach space.
We establish non-asymptotic bounds for both the operator defect and the estimation error.
arXiv Detail & Related papers (2022-01-21T02:46:57Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Nonlinear Two-Time-Scale Stochastic Approximation: Convergence and
Finite-Time Performance [1.52292571922932]
We study the convergence and finite-time analysis of the nonlinear two-time-scale approximation.
In particular, we show that the method achieves a convergence in expectation at a rate $mathcalO (1/k2/3)$, where $k$ is the number of iterations.
arXiv Detail & Related papers (2020-11-03T17:43:39Z) - Finite-Time Convergence Rates of Decentralized Stochastic Approximation
with Applications in Multi-Agent and Multi-Task Learning [16.09467599829253]
We study a data-driven approach for finding the root of an operator under noisy measurements.
A network of agents, each with its own operator and data observations, cooperatively find the fixed point of the aggregate operator over a decentralized communication graph.
Our main contribution is to provide a finite-time analysis of this decentralized approximation method when the data observed at each agent are sampled from a Markov process.
arXiv Detail & Related papers (2020-10-28T17:01:54Z) - Stochastic Approximation with Markov Noise: Analysis and applications in
reinforcement learning [0.0]
We present for the first time an convergence analysis of two time-scale approximation driven by "controlled" Markov noise.
We analyze the behavior of our framework by relating it to limiting differential inclusions in both time scales.
We obtain the first informative error bounds on function approximation for the policy evaluation algorithm.
arXiv Detail & Related papers (2020-04-08T03:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.