Optimizing Molecules using Efficient Queries from Property Evaluations
- URL: http://arxiv.org/abs/2011.01921v2
- Date: Mon, 18 Oct 2021 21:07:56 GMT
- Title: Optimizing Molecules using Efficient Queries from Property Evaluations
- Authors: Samuel Hoffman, Vijil Chenthamarakshan, Kahini Wadhawan, Pin-Yu Chen,
Payel Das
- Abstract summary: We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
- Score: 66.66290256377376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based methods have shown potential for optimizing existing
molecules with more desirable properties, a critical step towards accelerating
new chemical discovery. Here we propose QMO, a generic query-based molecule
optimization framework that exploits latent embeddings from a molecule
autoencoder. QMO improves the desired properties of an input molecule based on
efficient queries, guided by a set of molecular property predictions and
evaluation metrics. We show that QMO outperforms existing methods in the
benchmark tasks of optimizing small organic molecules for drug-likeness and
solubility under similarity constraints. We also demonstrate significant
property improvement using QMO on two new and challenging tasks that are also
important in real-world discovery problems: (i) optimizing existing potential
SARS-CoV-2 Main Protease inhibitors toward higher binding affinity; and (ii)
improving known antimicrobial peptides towards lower toxicity. Results from QMO
show high consistency with external validations, suggesting effective means to
facilitate material optimization problems with design constraints.
Related papers
- Balancing property optimization and constraint satisfaction for constrained multi-property molecular optimization [13.665517935917048]
We propose a constrained multi-property molecular optimization framework (CMOMO), which is a flexible and efficient method to simultaneously optimize multiple molecular properties.
Experimental results show the superior performance of the proposed CMOMO over five state-of-the-art molecular optimization methods.
arXiv Detail & Related papers (2024-11-19T02:01:13Z) - Text-Guided Multi-Property Molecular Optimization with a Diffusion Language Model [77.50732023411811]
We propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM)
TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions.
Our approach surpasses state-of-the-art methods in optimizing molecular structural similarity and enhancing chemical properties on the benchmark dataset.
arXiv Detail & Related papers (2024-10-17T14:30:27Z) - XMOL: Explainable Multi-property Optimization of Molecules [2.320539066224081]
We propose Explainable Multi-property Optimization of Molecules (XMOL) to optimize multiple molecular properties simultaneously.
Our approach builds on state-of-the-art geometric diffusion models, extending them to multi-property optimization.
We integrate interpretive and explainable techniques throughout the optimization process.
arXiv Detail & Related papers (2024-09-12T06:35:04Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Pareto Optimization to Accelerate Multi-Objective Virtual Screening [11.356174411578515]
We develop a tool to search a virtual library of over 4M molecules for those predicted to be selective dual inhibitors of EGFR and IGF1R.
This workflow and associated open source software can reduce the screening burden of molecular design projects.
arXiv Detail & Related papers (2023-10-16T17:19:46Z) - Beyond Chemical Language: A Multimodal Approach to Enhance Molecular
Property Prediction [2.1202329976106924]
We present a novel multimodal language model approach for predicting molecular properties by combining chemical language representation with physicochemical features.
Our approach, MULTIMODAL-MOLFORMER, utilizes a causal multistage feature selection method that identifies physicochemical features based on their direct causal effect on a specific target property.
Our results demonstrate a superior performance compared to existing state-of-the-art algorithms, including the chemical language-based MOLFORMER and graph neural networks.
arXiv Detail & Related papers (2023-06-22T13:28:59Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
We propose MNCE-RL, a graph convolutional policy network for molecular optimization.
We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation.
We show that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks.
arXiv Detail & Related papers (2020-11-14T05:42:15Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z) - Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning [0.0]
We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
arXiv Detail & Related papers (2020-04-29T16:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.