Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2004.14308v2
- Date: Fri, 16 Oct 2020 19:44:35 GMT
- Title: Molecular Design in Synthetically Accessible Chemical Space via Deep
Reinforcement Learning
- Authors: Julien Horwood and Emmanuel Noutahi
- Abstract summary: We argue that existing generative methods are limited in their ability to favourably shift the distributions of molecular properties during optimization.
We propose a novel Reinforcement Learning framework for molecular design in which an agent learns to directly optimize through a space of synthetically-accessible drug-like molecules.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fundamental goal of generative drug design is to propose optimized
molecules that meet predefined activity, selectivity, and pharmacokinetic
criteria. Despite recent progress, we argue that existing generative methods
are limited in their ability to favourably shift the distributions of molecular
properties during optimization. We instead propose a novel Reinforcement
Learning framework for molecular design in which an agent learns to directly
optimize through a space of synthetically-accessible drug-like molecules. This
becomes possible by defining transitions in our Markov Decision Process as
chemical reactions, and allows us to leverage synthetic routes as an inductive
bias. We validate our method by demonstrating that it outperforms existing
state-of the art approaches in the optimization of pharmacologically-relevant
objectives, while results on multi-objective optimization tasks suggest
increased scalability to realistic pharmaceutical design problems.
Related papers
- Quantum-inspired Reinforcement Learning for Synthesizable Drug Design [20.00111975801053]
We introduce a novel approach using the reinforcement learning method with quantum-inspired simulated annealing policy neural network to navigate the vast discrete space of chemical structures intelligently.
Specifically, we employ a deterministic REINFORCE algorithm using policy neural networks to output transitional probability to guide state transitions and local search.
Our methods are evaluated with the Practical Molecular Optimization (PMO) benchmark framework with a 10K query budget.
arXiv Detail & Related papers (2024-09-13T20:43:16Z) - Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation [0.0]
We present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol)
LEOMol is a generative modeling framework for the efficient generation of optimized molecules.
Our approach consistently demonstrates superior performance compared to previous state-of-the-art models.
arXiv Detail & Related papers (2024-07-02T13:42:21Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Deep Lead Optimization: Leveraging Generative AI for Structural Modification [12.167178956742113]
This review delves into the basic concepts, goals, conventional CADD techniques, and recent advancements in AIDD.
We introduce a unified perspective based on constrained subgraph generation to harmonize the methodologies of de novo design and lead optimization.
arXiv Detail & Related papers (2024-04-30T03:17:42Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
We develop a versatile 'plug-in' molecular generation model that incorporates objectives related to target affinity, drug-likeness, and synthesizability.
We identify PSO-ENP as the optimal variant for multi-objective molecular generation and optimization.
arXiv Detail & Related papers (2024-04-10T02:37:24Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed
Molecular Generation [23.618366377098614]
We propose a cost-effective evolution strategy in latent space, which optimize the molecular latent representation vectors.
We adopt a pre-trained molecular generative model to map the latent and observation spaces.
We conduct extensive experiments on multiple optimization tasks comparing the proposed framework to several advanced techniques.
arXiv Detail & Related papers (2021-11-30T11:02:18Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
We propose MNCE-RL, a graph convolutional policy network for molecular optimization.
We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation.
We show that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks.
arXiv Detail & Related papers (2020-11-14T05:42:15Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
We propose a novel forward synthesis framework powered by reinforcement learning (RL) for de novo drug design.
In this setup, the agent learns to navigate through the immense synthetically accessible chemical space.
We describe how the end-to-end training in this study represents an important paradigm in radically expanding the synthesizable chemical space.
arXiv Detail & Related papers (2020-04-26T21:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.