論文の概要: Comparison of pharmacist evaluation of medication orders with
predictions of a machine learning model
- arxiv url: http://arxiv.org/abs/2011.01925v1
- Date: Tue, 3 Nov 2020 18:57:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:37:21.590298
- Title: Comparison of pharmacist evaluation of medication orders with
predictions of a machine learning model
- Title(参考訳): 医薬品注文の薬剤師評価と機械学習モデルによる予測の比較
- Authors: Sophie-Camille Hogue, Flora Chen, Genevi\`eve Brassard, Denis Lebel,
Jean-Fran\c{c}ois Bussi\`eres, Audrey Durand, Maxime Thibault
- Abstract要約: 本研究の目的は、異常な薬品注文と薬理学的プロファイルを特定することを目的とした、教師なし機械学習モデルの臨床的パフォーマンスを評価することである。
我々は2020年4月から2020年8月にかけて,臨床薬剤師25人が12,471件の薬剤の注文と1,356件の薬理学的プロファイルを評価した前向きな調査を行った。
AUPRに基づくと、パフォーマンスは注文に乏しかったが、プロファイルに満足していた。
- 参考スコア(独自算出の注目度): 5.287389933152708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of this work was to assess the clinical performance of an
unsupervised machine learning model aimed at identifying unusual medication
orders and pharmacological profiles. We conducted a prospective study between
April 2020 and August 2020 where 25 clinical pharmacists dichotomously (typical
or atypical) rated 12,471 medication orders and 1,356 pharmacological profiles.
Based on AUPR, performance was poor for orders, but satisfactory for profiles.
Pharmacists considered the model a useful screening tool.
- Abstract(参考訳): この研究の目的は、異常な薬の注文と薬理学的プロファイルを特定することを目的とした教師なし機械学習モデルの臨床的性能を評価することである。
我々は2020年4月から2020年8月までに25名の臨床薬剤師(典型的または非典型的)が12,471名、薬理学的プロファイルが1,356名であった。
AUPRに基づくと、パフォーマンスは注文に乏しかったが、プロファイルに満足していた。
薬剤師はこのモデルが有用なスクリーニングツールだと考えた。
関連論文リスト
- Development and Validation of a Deep-Learning Model for Differential Treatment Benefit Prediction for Adults with Major Depressive Disorder Deployed in the Artificial Intelligence in Depression Medication Enhancement (AIDME) Study [0.622895724042048]
大うつ病(MDD)の薬理学的治療は、試行錯誤のアプローチに依存している。
治療結果のパーソナライズを目的とした人工知能(AI)モデルを導入する。
論文 参考訳(メタデータ) (2024-06-07T15:04:59Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Enhancing Acute Kidney Injury Prediction through Integration of Drug
Features in Intensive Care Units [0.0]
急性腎障害(AKI)予測と腎障害薬との関連は, 治療現場ではまだ検討されていない。
そこで本研究では,患者処方データをモダリティとして活用し,既存のAKI予測モデルを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-01-09T05:42:32Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - This Patient Looks Like That Patient: Prototypical Networks for
Interpretable Diagnosis Prediction from Clinical Text [56.32427751440426]
臨床実践においては、そのようなモデルは正確であるだけでなく、医師に解釈可能で有益な結果を与える必要がある。
本稿では,プロトタイプネットワークに基づく新しい手法であるProtoPatientを紹介する。
利用可能な2つの臨床データセット上でモデルを評価し、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-16T10:12:07Z) - Prediction of drug effectiveness in rheumatoid arthritis patients based
on machine learning algorithms [2.5759046095742453]
慢性関節リウマチ(RA)は、患者の免疫系が誤って自身の組織を標的としたときに引き起こされる自己免疫疾患である。
機械学習(ML)は、患者の電子的健康記録のパターンを特定し、患者の結果を改善する最良の臨床治療を予測する可能性がある。
本研究は, 臨床データから情報を取り出すためのデータ処理パイプラインを設計し, 機能的使用のために前処理し, 2) 薬物に対するRA患者の反応を予測し, 分類モデルの性能を評価するためのTNFフレームワークを導入した。
論文 参考訳(メタデータ) (2022-10-14T15:15:37Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - Conditional Generation Net for Medication Recommendation [73.09366442098339]
医薬推奨は、患者の診断に従って適切な薬セットを提供することを目標としており、これは診療所において重要な課題である。
医薬品群を生成するための新しいコピー・アンド・予測機構を導入した条件生成ネット(COGNet)を提案する。
提案手法を公開MIMICデータセット上で検証し,実験結果から,提案手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-02-14T10:16:41Z) - Clinical Utility of the Automatic Phenotype Annotation in Unstructured
Clinical Notes: ICU Use Cases [11.22817749252584]
本研究は,集中治療室における結果を予測するための重要な情報を取得する方法として,臨床ノートから表現型の自動アノテーションを提案する。
In-hospital death,physiological decompensation and length of stay in the ICU set。
論文 参考訳(メタデータ) (2021-07-24T17:55:55Z) - Multi-View Self-Attention for Interpretable Drug-Target Interaction
Prediction [4.307720252429733]
機械学習のアプローチでは、分子の数値表現がモデルの性能に欠かせない。
薬物と標的の相互作用をモデル化するための自己注意に基づく多視点表現学習手法を提案する。
論文 参考訳(メタデータ) (2020-05-01T14:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。