論文の概要: Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds
- arxiv url: http://arxiv.org/abs/2011.01974v2
- Date: Fri, 6 Nov 2020 17:00:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:30:14.985564
- Title: Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds
- Title(参考訳): 3次元LiDAR点雲のリアルタイムセマンティックセグメンテーションのための多重射影融合
- Authors: Yara Ali Alnaggar, Mohamed Afifi, Karim Amer, Mohamed Elhelw
- Abstract要約: 本稿では,ポイントクラウドの複数のプロジェクションを利用する3次元ポイントクラウドセマンティックセマンティックセマンティクスの新しいアプローチを提案する。
我々のMulti-Projection Fusionフレームワークは、2つの異なる高効率2次元完全畳み込みモデルを用いて球面および鳥眼の視射影を解析する。
- 参考スコア(独自算出の注目度): 2.924868086534434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of 3D point cloud data is essential for enhanced
high-level perception in autonomous platforms. Furthermore, given the
increasing deployment of LiDAR sensors onboard of cars and drones, a special
emphasis is also placed on non-computationally intensive algorithms that
operate on mobile GPUs. Previous efficient state-of-the-art methods relied on
2D spherical projection of point clouds as input for 2D fully convolutional
neural networks to balance the accuracy-speed trade-off. This paper introduces
a novel approach for 3D point cloud semantic segmentation that exploits
multiple projections of the point cloud to mitigate the loss of information
inherent in single projection methods. Our Multi-Projection Fusion (MPF)
framework analyzes spherical and bird's-eye view projections using two separate
highly-efficient 2D fully convolutional models then combines the segmentation
results of both views. The proposed framework is validated on the SemanticKITTI
dataset where it achieved a mIoU of 55.5 which is higher than state-of-the-art
projection-based methods RangeNet++ and PolarNet while being 1.6x faster than
the former and 3.1x faster than the latter.
- Abstract(参考訳): 3dポイントクラウドデータのセマンティクスセグメンテーションは、自律プラットフォームにおけるハイレベルな認識強化に不可欠である。
さらに、車やドローンに搭載されるLiDARセンサーの増加を踏まえ、モバイルGPUで動作する非計算集約アルゴリズムにも特に重点が置かれている。
従来の効率的な最先端手法は、2次元完全畳み込みニューラルネットワークの入力として点雲の2次元球面投影に依存しており、精度と速度のトレードオフのバランスを取っている。
本稿では,単一投影法に内在する情報の損失を軽減するために,ポイントクラウドの複数の投影を利用する3dポイントクラウドセマンティクスセグメンテーションの新しいアプローチを提案する。
マルチプロジェクション融合 (mpf) フレームワークは, 2つの高効率な2次元完全畳み込みモデルを用いて球面および鳥眼の投影を解析し, 両視点のセグメンテーション結果を統合する。
提案されたフレームワークはsemantickittiデータセット上で検証され、最新のプロジェクションベースメソッドであるrangenet++とpolarnetよりも高い55.5miouを達成し、前よりも1.6倍高速で、後者より3.1倍高速である。
関連論文リスト
- Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
本稿では,点雲を効果的かつ包括的に表現する円筒型三重対視図を提案する。
また,LiDAR点雲の距離分布を考慮し,円筒座標系における三点ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
論文 参考訳(メタデータ) (2023-08-31T17:57:17Z) - Multi-Sem Fusion: Multimodal Semantic Fusion for 3D Object Detection [11.575945934519442]
LiDARとカメラ融合技術は、自律運転において3次元物体検出を実現することを約束している。
多くのマルチモーダルな3Dオブジェクト検出フレームワークは、2D画像からのセマンティック知識を3D LiDARポイントクラウドに統合する。
本稿では2次元画像と3次元ポイントシーン解析結果の両方から意味情報を融合する汎用多モード融合フレームワークであるMulti-Sem Fusion(MSF)を提案する。
論文 参考訳(メタデータ) (2022-12-10T10:54:41Z) - CPGNet: Cascade Point-Grid Fusion Network for Real-Time LiDAR Semantic
Segmentation [8.944151935020992]
本稿では,有効性と効率を両立するカスケードポイントグリッド融合ネットワーク(CPGNet)を提案する。
アンサンブルモデルやTTAのないCPGNetは最先端のRPVNetと同等だが、4.7倍高速である。
論文 参考訳(メタデータ) (2022-04-21T06:56:30Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
本稿では,効率的な3Dポイント・クラウド・オブジェクト検出のための新しい2段階フレームワークを提案する。
生のクラウドデータを3D空間で直接解析するが、目覚ましい効率と精度を実現する。
我々は,75 FPSでKITTI 3Dオブジェクト検出データセットを,25 FPSの推論速度で良好な精度でOpenデータセット上で強調する。
論文 参考訳(メタデータ) (2021-07-27T10:07:39Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation [81.02742110604161]
大規模運転シーンのLiDARセグメンテーションのための最先端の手法は、しばしば点雲を2次元空間に投影し、2D畳み込みによって処理する。
そこで我々は,3次元幾何学的パタンを探索するために,円筒分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
提案手法はセマンティックKITTIのリーダーボードにおいて第1位を獲得し,既存のnuScenesの手法を約4%のマージンで上回っている。
論文 参考訳(メタデータ) (2020-11-19T18:53:11Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
多数の点を効率的に扱うために,注目度に基づくアトラス畳み込みニューラルネットワークアーキテクチャを提案する。
提案モデルは,3次元セマンティックセグメンテーションタスクにおいて,最も重要な2つの3Dポイントクラウドデータセット上で評価されている。
精度の面では最先端モデルと比較して妥当な性能を達成し、パラメータの数ははるかに少ない。
論文 参考訳(メタデータ) (2019-12-27T13:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。