論文の概要: PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction
- arxiv url: http://arxiv.org/abs/2308.16896v1
- Date: Thu, 31 Aug 2023 17:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 13:21:28.277481
- Title: PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction
- Title(参考訳): PointOcc:ポイントベース3次元セマンティックアクシデント予測のための円筒型立体視
- Authors: Sicheng Zuo, Wenzhao Zheng, Yuanhui Huang, Jie Zhou, Jiwen Lu
- Abstract要約: 本稿では,点雲を効果的かつ包括的に表現する円筒型三重対視図を提案する。
また,LiDAR点雲の距離分布を考慮し,円筒座標系における三点ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
- 参考スコア(独自算出の注目度): 72.75478398447396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation in autonomous driving has been undergoing an evolution
from sparse point segmentation to dense voxel segmentation, where the objective
is to predict the semantic occupancy of each voxel in the concerned 3D space.
The dense nature of the prediction space has rendered existing efficient
2D-projection-based methods (e.g., bird's eye view, range view, etc.)
ineffective, as they can only describe a subspace of the 3D scene. To address
this, we propose a cylindrical tri-perspective view to represent point clouds
effectively and comprehensively and a PointOcc model to process them
efficiently. Considering the distance distribution of LiDAR point clouds, we
construct the tri-perspective view in the cylindrical coordinate system for
more fine-grained modeling of nearer areas. We employ spatial group pooling to
maintain structural details during projection and adopt 2D backbones to
efficiently process each TPV plane. Finally, we obtain the features of each
point by aggregating its projected features on each of the processed TPV planes
without the need for any post-processing. Extensive experiments on both 3D
occupancy prediction and LiDAR segmentation benchmarks demonstrate that the
proposed PointOcc achieves state-of-the-art performance with much faster speed.
Specifically, despite only using LiDAR, PointOcc significantly outperforms all
other methods, including multi-modal methods, with a large margin on the
OpenOccupancy benchmark. Code: https://github.com/wzzheng/PointOcc.
- Abstract(参考訳): 自律運転におけるセマンティクスセグメンテーションは、スパースポイントセグメンテーションから密集したボクセルセグメンテーションへと進化し、対象とする3次元空間における各ボクセルの意味的占有率を予測することを目的としている。
予測空間の密集した性質は、3Dシーンのサブスペースしか記述できないため、既存の効率的な2Dプロジェクションベースの方法(例えば、鳥の目視、レンジビューなど)を非効率にしている。
そこで本研究では,点雲を効果的かつ包括的に表現する円筒型三重対視ビューと,それを効率的に処理するPointOccモデルを提案する。
ライダー点雲の距離分布を考慮し, 近接領域のより細かなモデリングのために, 円柱座標系における三面ビューを構築した。
プロジェクション中に構造の詳細を維持するために空間群プーリングを使用し、各TPV平面を効率的に処理するために2次元バックボーンを採用する。
最後に,処理後処理を必要とせず,各処理済みtpv平面に投影された特徴を集約することで,各点の特徴を得る。
3次元占有率予測とlidarセグメンテーションベンチマークの両方に関する広範囲な実験により、提案するpointoccはより高速で最先端のパフォーマンスを達成できることが示されている。
具体的には、LiDARのみを使用するにもかかわらず、PointOccはOpenOccupancyベンチマークにおいて大きなマージンを持つマルチモーダルメソッドを含む他のすべてのメソッドよりも大幅に優れている。
コード: https://github.com/wzzheng/pointocc。
関連論文リスト
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR
Point Clouds [2.924868086534434]
本稿では,ポイントクラウドの複数のプロジェクションを利用する3次元ポイントクラウドセマンティックセマンティックセマンティクスの新しいアプローチを提案する。
我々のMulti-Projection Fusionフレームワークは、2つの異なる高効率2次元完全畳み込みモデルを用いて球面および鳥眼の視射影を解析する。
論文 参考訳(メタデータ) (2020-11-03T19:40:43Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Leveraging Planar Regularities for Point Line Visual-Inertial Odometry [13.51108336267342]
モノクラー・ビジュアル・慣性オドメトリー(VIO)システムでは、3Dポイント・クラウドとカメラ・モーションを同時に推定することができる。
平面規則性だけでなく点特徴や線特徴を利用するPLP-VIOを提案する。
提案手法の有効性を,合成データと公開データセットの両方で検証した。
論文 参考訳(メタデータ) (2020-04-16T18:20:00Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
3次元空間で定義された畳み込みカーネルの円筒形表現を利用する学習可能なモジュールである円筒型畳み込みネットワーク(CCN)を導入する。
CCNはビュー固有の畳み込みカーネルを通してビュー固有の特徴を抽出し、各視点におけるオブジェクトカテゴリスコアを予測する。
本実験は,円柱状畳み込みネットワークが関節物体の検出と視点推定に与える影響を実証する。
論文 参考訳(メタデータ) (2020-03-25T10:24:58Z) - OccuSeg: Occupancy-aware 3D Instance Segmentation [39.71517989569514]
3D占有サイズ」とは、各インスタンスが占有するボクセルの数である。
OccuSegは、3Dインスタンスのセグメンテーションスキームである。
3つの実世界のデータセット上での“最先端のパフォーマンス”。
論文 参考訳(メタデータ) (2020-03-14T02:48:55Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
多数の点を効率的に扱うために,注目度に基づくアトラス畳み込みニューラルネットワークアーキテクチャを提案する。
提案モデルは,3次元セマンティックセグメンテーションタスクにおいて,最も重要な2つの3Dポイントクラウドデータセット上で評価されている。
精度の面では最先端モデルと比較して妥当な性能を達成し、パラメータの数ははるかに少ない。
論文 参考訳(メタデータ) (2019-12-27T13:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。