論文の概要: Single Image Human Proxemics Estimation for Visual Social Distancing
- arxiv url: http://arxiv.org/abs/2011.02018v2
- Date: Thu, 5 Nov 2020 14:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 05:29:52.737841
- Title: Single Image Human Proxemics Estimation for Visual Social Distancing
- Title(参考訳): 視覚ソーシャルディスタンシングのための単一画像人間のプロキシミクス推定
- Authors: Maya Aghaei, Matteo Bustreo, Yiming Wang, Gianluca Bailo, Pietro
Morerio, Alessio Del Bue
- Abstract要約: シーングラウンドと画像平面のホモグラフィ行列を近似する半自動解を提案する。
次に、オフザシェルフポーズ検出装置を利用して、画像上の身体のポーズを検出し、対人距離を判断する。
- 参考スコア(独自算出の注目度): 37.84559773949066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the problem of estimating the so-called "Social
Distancing" given a single uncalibrated image in unconstrained scenarios. Our
approach proposes a semi-automatic solution to approximate the homography
matrix between the scene ground and image plane. With the estimated homography,
we then leverage an off-the-shelf pose detector to detect body poses on the
image and to reason upon their inter-personal distances using the length of
their body-parts. Inter-personal distances are further locally inspected to
detect possible violations of the social distancing rules. We validate our
proposed method quantitatively and qualitatively against baselines on public
domain datasets for which we provided groundtruth on inter-personal distances.
Besides, we demonstrate the application of our method deployed in a real
testing scenario where statistics on the inter-personal distances are currently
used to improve the safety in a critical environment.
- Abstract(参考訳): 本研究では, 制約のないシナリオにおいて, 単一の未調整画像からいわゆる「ソーシャルディスタンシング」を推定する問題に対処する。
本研究では,シーングラウンドと画像平面間のホモグラフィ行列を近似する半自動解法を提案する。
推定されたホモグラフィーを用いて、オフザシェルフポーズ検出装置を利用して、画像上の身体のポーズを検出し、身体部分の長さを用いて個人間の距離を判断する。
対人距離はさらに局所的に検査され、社会距離規則違反の可能性を検出する。
提案手法は,個人間距離を基礎としたパブリックドメインデータセットのベースラインに対して定量的に定性的に検証する。
また,本手法の実際のテストシナリオにおける適用例を示すとともに,個人間距離の統計を重要環境における安全性向上に利用している。
関連論文リスト
- View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
本稿では,屋外ロボットのための微細な自己局在化手法を提案する。
提案手法は,既存のクロスビューローカライゼーション手法の限界に対処する。
これは、動的環境における知覚を増強する初めての疎視のみの手法である。
論文 参考訳(メタデータ) (2023-08-16T02:51:52Z) - Monitoring social distancing with single image depth estimation [39.79652626235862]
単一画像深度推定は、他の深度認識手法の代替となる可能性がある。
私たちのフレームワークは、純粋なCPUシステムでも、競争相手に対して合理的に高速かつコンパラブルに動作できます。
論文 参考訳(メタデータ) (2022-04-04T17:58:02Z) - BEV-Net: Assessing Social Distancing Compliance by Joint People
Localization and Geometric Reasoning [77.08836528980248]
新型コロナウイルス(COVID-19)の感染拡大を受け、公衆衛生に不可欠なソーシャルディスタンシング(ソーシャルディスタンシング)が注目されている。
本研究では,広視野カメラを用いた公共空間における視覚的ソーシャル・ディスタンシング・コンプライアンス・アセスメントの課題について考察する。
鳥眼ビュー(BEV)下での注釈付き群集シーンのデータセットと距離測定のための地上真実を紹介する。
マルチブランチネットワークであるBEV-Netは、世界座標における個人をローカライズし、ソーシャルディスタンシングに違反する高リスク領域を特定するために提案されている。
論文 参考訳(メタデータ) (2021-10-10T23:56:37Z) - Towards Accurate Cross-Domain In-Bed Human Pose Estimation [3.685548851716087]
長波長赤外(LWIR)変調に基づくポーズ推定アルゴリズムは、上記の課題を克服する。
そこで本研究では,ドメイン間差を低減するために,2次元データ拡張による新たな学習戦略を提案する。
実験と分析により,複数の標準人のポーズ推定基準に対するアプローチの有効性が示された。
論文 参考訳(メタデータ) (2021-10-07T15:54:46Z) - Single View Physical Distance Estimation using Human Pose [18.9877515094788]
本稿では,1枚のRGB画像やビデオからカメラ内在物,地上面,人物間の物理的距離を同時に推定する完全自動システムを提案する。
提案手法により、既存のカメラシステムは、専用のキャリブレーションプロセスやレンジセンサーを必要とせず、物理的距離を測定することができる。
その結果,ポーズに基づく自動校正と距離推定の問題に対して,MEVADAが世界初となる評価ベンチマークとなった。
論文 参考訳(メタデータ) (2021-06-18T19:50:40Z) - Perceptual Loss for Robust Unsupervised Homography Estimation [1.2891210250935146]
BiHomEは、ソース視点からの歪んだ画像とターゲット視点からの対応する画像との間の特徴空間における距離を最小化する。
我々は、biHomEが合成COCOデータセットの最先端のパフォーマンスを達成することを示しています。
論文 参考訳(メタデータ) (2021-04-20T14:41:54Z) - Automatic Social Distance Estimation From Images: Performance
Evaluation, Test Benchmark, and Algorithm [78.88882860340797]
新型コロナウイルスは2020年3月から世界的なパンデミックを引き起こしている。
感染リスクを低減するため、他者から最低1メートルの距離を維持することが強く示唆されている。
このようなアルゴリズムには適切なテストベンチマークは存在しない。
論文 参考訳(メタデータ) (2021-03-11T16:15:20Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
本稿では,トレーニング中に幾何学的制約を多視点一貫性という形で組み込むマルチカメラフレームワークを提案する。
本手法は,標準ベンチマークから視覚的に外れた画像に対して,最先端の自己監視的人物検出とセグメンテーション技術に勝ることを示す。
論文 参考訳(メタデータ) (2020-12-09T15:47:21Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
本稿では,ビデオ中のフレームの粗いサブセットに対してのみアノテーションが利用できる場合に,時間とともに光度整合性を活用する手法を提案する。
本モデルでは,ポーズを推定することにより,手や物体を3Dで共同で再構成するカラーイメージをエンドツーエンドに訓練する。
提案手法は,3次元手動画像再構成の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。