論文の概要: Low cost enhanced security face recognition with stereo cameras
- arxiv url: http://arxiv.org/abs/2011.02222v1
- Date: Wed, 4 Nov 2020 10:55:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 22:24:01.958365
- Title: Low cost enhanced security face recognition with stereo cameras
- Title(参考訳): ステレオカメラを用いた低コスト高セキュリティ顔認証
- Authors: Biel Tura Vecino, Mart\'i Cobos and Philippe Salembier
- Abstract要約: 現在の低コストの顔認証ソフトウェアは、深度情報の欠如により、顔の印刷画像に騙されることがある。
提示されたソフトウェアは、ステレオセットアップの助けを借りて顔の深度マップを作成し、従来の認識プログラムよりも高いレベルのセキュリティを提供する。
人物の身元と顔深度マップの分析は、深層畳み込みニューラルネットワークを通して処理される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article explores a face recognition alternative which seeks to
contribute to resolve current security vulnerabilities in most recognition
architectures. Current low cost facial authentication software in the market
can be fooled by a printed picture of a face due to the lack of depth
information. The presented software creates a depth map of the face with the
help of a stereo setup, offering a higher level of security than traditional
recognition programs. Analysis of the person's identity and facial depth map
are processed through deep convolutional neural networks, providing a secure
low cost real-time face authentication method.
- Abstract(参考訳): この記事では、ほとんどの認識アーキテクチャにおける現在のセキュリティ脆弱性の解決に貢献する、顔認識代替策について検討する。
現在の市場における低コストの顔認証ソフトウェアは、深度情報の欠如により、顔の印刷画像に騙されることがある。
提示されたソフトウェアは、ステレオセットアップの助けを借りて顔の深度マップを作成し、従来の認識プログラムよりも高いレベルのセキュリティを提供する。
深層畳み込みニューラルネットワークを用いて人物のアイデンティティと顔深度マップの解析を行い、安全な低コストなリアルタイム顔認証手法を提供する。
関連論文リスト
- A Machine Learning-Based Secure Face Verification Scheme and Its Applications to Digital Surveillance [0.9208007322096533]
ほとんどの現実世界の認識システムは、認証に使用される識別に敏感な顔画像を保護することの重要性を無視している。
我々は、DeepID2畳み込みニューラルネットワークを用いて、顔画像の特徴を抽出し、EMアルゴリズムを用いて顔認証問題を解決する。
我々は,3段階のプライバシ懸念に基づいて,地域社会の監視(または入り口)制御のための3つの顔認証システムを開発した。
論文 参考訳(メタデータ) (2024-10-29T12:25:00Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
顔画像は、各ユーザのアイデンティティ情報に関連付けられた、敏感なバイオメトリック属性である。
本稿では,顔認識の入力次元を低減するために,ハイブリッド周波数-カラー融合法を提案する。
1:Nの検証シナリオの最先端よりも約2.6%から4.2%高い精度を持つ。
論文 参考訳(メタデータ) (2024-01-24T11:27:32Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
顔認識システムは、高セキュリティアプリケーションに広くデプロイされている。
フェースモーフィングのようなデジタル操作は、顔認識システムにセキュリティ上の脅威をもたらす。
本稿では,ディープラーニングに基づく顔認識システムを,顔形態攻撃に対してより堅牢なものにするための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T21:04:05Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
本稿では,周波数領域における差分プライバシーを用いたプライバシ保護顔認証手法を提案する。
本手法はいくつかの古典的顔認証テストセットで非常によく機能する。
論文 参考訳(メタデータ) (2022-07-15T07:15:36Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
ディープニューラルネットワーク(DNN)の開発によって顔認識が大幅に促進された
近年の研究では、DNNは敵対的な事例に対して非常に脆弱であることが示されており、現実世界の顔認識の安全性に対する深刻な懸念が提起されている。
ステッカーによる顔認識の物理的攻撃について検討し、その対向的堅牢性をよりよく理解する。
論文 参考訳(メタデータ) (2021-09-20T06:49:52Z) - Do We Need Depth in State-Of-The-Art Face Authentication? [8.755493949976492]
本研究では,顔表面や深度マップを明示的に計算することなく,ステレオカメラシステムから顔を認識する新しい手法を提案する。
原顔ステレオ画像は、顔が抽出された画像の位置とともに、提案したCNNが認識タスクを改善することができる。
提案手法は,大規模ベンチマークにおいて,単一画像と明示的深度に基づく手法の両方に優れることを示した。
論文 参考訳(メタデータ) (2020-03-24T14:51:25Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。