Evolving test instances of the Hamiltonian completion problem
- URL: http://arxiv.org/abs/2011.02291v2
- Date: Mon, 18 Jan 2021 19:28:04 GMT
- Title: Evolving test instances of the Hamiltonian completion problem
- Authors: Thibault Lechien, Jorik Jooken, Patrick De Causmaecker
- Abstract summary: We propose a new methodology to generate a diverse set of instances by using an evolutionary algorithm.
We analyze the resulting graphs and get key insights into which attributes are most related to algorithm performance.
- Score: 0.7734726150561086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting and comparing algorithm performance on graph instances is
challenging for multiple reasons. First, there is usually no standard set of
instances to benchmark performance. Second, using existing graph generators
results in a restricted spectrum of difficulty and the resulting graphs are
usually not diverse enough to draw sound conclusions. That is why recent work
proposes a new methodology to generate a diverse set of instances by using an
evolutionary algorithm. We can then analyze the resulting graphs and get key
insights into which attributes are most related to algorithm performance. We
can also fill observed gaps in the instance space in order to generate graphs
with previously unseen combinations of features. This methodology is applied to
the instance space of the Hamiltonian completion problem using two different
solvers, namely the Concorde TSP Solver and a multi-start local search
algorithm.
Related papers
- A Differentially Private Clustering Algorithm for Well-Clustered Graphs [6.523602840064548]
We provide an efficient ($epsilon,$delta$)-DP algorithm tailored specifically for such graphs.
Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters.
arXiv Detail & Related papers (2024-03-21T11:57:16Z) - SAT-Based Algorithms for Regular Graph Pattern Matching [40.86962847131912]
We propose a generalization of graph isomorphism that allows one to check complex structural properties.
This specification is given in the form of a Regular Graph Pattern (ReGaP), a special type of graph inspired by regular expressions.
We propose a SAT-based algorithm for checking if a target graph matches a given ReGaP.
arXiv Detail & Related papers (2023-12-15T18:12:44Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - A Comparative Study of Graph Matching Algorithms in Computer Vision [42.041759337188914]
We present a comparative study of graph matching algorithms.
We create a benchmark where we collect and categorize a large set of existing and publicly available computer vision graph matching problems.
At the same time we collect and categorize the most popular open-source implementations of graph matching algorithms.
arXiv Detail & Related papers (2022-07-01T09:37:34Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Online Matching in Sparse Random Graphs: Non-Asymptotic Performances of
Greedy Algorithm [20.582965700659788]
We estimate the competitive ratio of the simplest algorithm, GREEDY, by approximating some relevant discrete processes by their continuous counterparts.
We prove that, quite surprisingly, GREEDY can have better performance guarantees than RANKING, another celebrated algorithm for online matching.
arXiv Detail & Related papers (2021-07-02T12:18:19Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Efficient Permutation Discovery in Causal DAGs [9.22466799504763]
We introduce an efficient algorithm for finding sparse permutations of a directed acyclic graph.
We show that our method with depth $w$ runs in $O(pw+3)$ time.
We also compare our algorithm to provably consistent causal structure learning algorithms, such as the PC algorithm, GES, and GSP, and show that our method achieves comparable performance with a shorter runtime.
arXiv Detail & Related papers (2020-11-06T21:56:41Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.