論文の概要: Debiasing classifiers: is reality at variance with expectation?
- arxiv url: http://arxiv.org/abs/2011.02407v2
- Date: Mon, 31 May 2021 00:06:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 23:26:10.057575
- Title: Debiasing classifiers: is reality at variance with expectation?
- Title(参考訳): 偏見:現実は期待と相違しているか?
- Authors: Ashrya Agrawal and Florian Pfisterer and Bernd Bischl and Francois
Buet-Golfouse and Srijan Sood and Jiahao Chen and Sameena Shah and Sebastian
Vollmer
- Abstract要約: 私たちは、デバイアスは実際に、サンプル外データを一般化するのに失敗することが多く、実際は、改善よりも公平さを悪くする可能性があることを示しています。
公正さを考えると、パフォーマンスのトレードオフは、部分的偏りが実際にサンプル外データで実践した場合により良い結果をもたらすという直感的な考え方を正当化する。
- 参考スコア(独自算出の注目度): 9.730485257882433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an empirical study of debiasing methods for classifiers, showing
that debiasers often fail in practice to generalize out-of-sample, and can in
fact make fairness worse rather than better. A rigorous evaluation of the
debiasing treatment effect requires extensive cross-validation beyond what is
usually done. We demonstrate that this phenomenon can be explained as a
consequence of bias-variance trade-off, with an increase in variance
necessitated by imposing a fairness constraint. Follow-up experiments validate
the theoretical prediction that the estimation variance depends strongly on the
base rates of the protected class. Considering fairness--performance trade-offs
justifies the counterintuitive notion that partial debiasing can actually yield
better results in practice on out-of-sample data.
- Abstract(参考訳): 本稿では,分類器のデバイアス化手法に関する実証研究を行い,デバイアスは多くの場合,サンプルの一般化に失敗し,むしろ公平さを悪化させる可能性があることを示した。
脱バイアス治療効果の厳密な評価には、通常行われていることを超える広範な相互評価が必要である。
この現象は, 偏差トレードオフの結果として説明でき, 公平性制約を課すことで, 分散の増大が要求されることを示す。
追従実験は、推定のばらつきが保護されたクラスのベースレートに強く依存するという理論的予測を検証する。
公平性-パフォーマンス上のトレードオフを考えると、部分的デバイアスは実際にサンプルデータに対してより良い結果をもたらすという直観に反する考えを正当化する。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - How Far Can Fairness Constraints Help Recover From Biased Data? [9.430687114814997]
公平な分類に関する一般的な信念は、公正な制約は正確さとトレードオフを引き起こし、バイアスのあるデータが悪化する可能性があるというものである。
この信念とは対照的に、Blum & Stangl は、非常に偏りのあるデータであっても、同じ機会制約による公平な分類は、元のデータ分布上で最適に正確かつ公平な分類を回復できることを示した。
論文 参考訳(メタデータ) (2023-12-16T09:49:31Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
本研究では,データ偏差の変化が公正分類器の精度と公平性に及ぼす影響について検討する。
我々の実験は、既存のフェアネスダッシュボードにデータバイアスリスクの尺度を統合する方法を示している。
論文 参考訳(メタデータ) (2023-02-12T13:04:46Z) - Malign Overfitting: Interpolation Can Provably Preclude Invariance [30.776243638012314]
補間にもかかわらずモデルを適切に一般化する「良性過剰適合」は、堅牢性や公正性が望ましい設定に好ましくない可能性があることを示す。
本研究では,非補間型分類器の確率的不変性を学習するアルゴリズムを提案し,解析する。
論文 参考訳(メタデータ) (2022-11-28T19:17:31Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Ensembling over Classifiers: a Bias-Variance Perspective [13.006468721874372]
Pfau (2013) による偏差分解の拡張の上に構築し, 分類器のアンサンブルの挙動に関する重要な知見を得る。
条件付き推定は必然的に既約誤差を生じさせることを示す。
経験的に、標準的なアンサンブルはバイアスを減少させ、この予期せぬ減少のために、分類器のアンサンブルがうまく機能するかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2022-06-21T17:46:35Z) - Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed
Classification [90.17537630880305]
従来の長い尾の分類法では見過ごされがちな不偏見に対処する。
バイアスのないモデルをトレーニングするためのクロスドメイン経験的リスク最小化(xERM)を提案する。
論文 参考訳(メタデータ) (2021-12-29T03:18:47Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、バイアスがあるだけでなく、真のデータ分布に最適な精度を持つ分類器を生成する。
公平性に制約されたERMによるこの問題の是正能力について検討する。
また、トレーニングデータの再重み付け、等化オッド、復号化パリティなど、他のリカバリ手法についても検討する。
論文 参考訳(メタデータ) (2019-12-02T22:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。