論文の概要: Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks
- arxiv url: http://arxiv.org/abs/2011.02644v1
- Date: Thu, 5 Nov 2020 03:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 13:00:36.030169
- Title: Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks
- Title(参考訳): アドホック無線ネットワークにおける非同期リソース割り当てのための教師なし学習
- Authors: Zhiyang Wang, Mark Eisen and Alejandro Ribeiro
- Abstract要約: 集約グラフニューラルネットワーク(Agg-GNN)に基づく教師なし学習手法を設計する。
アクティベーションパターンを各ノードの特徴としてモデル化し,ポリシーに基づくリソース割り当て手法を訓練することにより,非同期性を捉える。
- 参考スコア(独自算出の注目度): 122.42812336946756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider optimal resource allocation problems under asynchronous wireless
network setting. Without explicit model knowledge, we design an unsupervised
learning method based on Aggregation Graph Neural Networks (Agg-GNNs).
Depending on the localized aggregated information structure on each network
node, the method can be learned globally and asynchronously while implemented
locally. We capture the asynchrony by modeling the activation pattern as a
characteristic of each node and train a policy-based resource allocation
method. We also propose a permutation invariance property which indicates the
transferability of the trained Agg-GNN. We finally verify our strategy by
numerical simulations compared with baseline methods.
- Abstract(参考訳): 非同期無線ネットワーク設定における最適資源割り当て問題について検討する。
本研究では,アグリゲーショングラフニューラルネットワーク(Agg-GNN)に基づく教師なし学習手法を設計する。
各ネットワークノード上の局所的な集約情報構造に依存するため,局所的に実装しながらグローバルかつ非同期に学習することができる。
アクティベーションパターンを各ノードの特徴としてモデル化し,ポリシーに基づくリソース割り当て手法を訓練することにより,非同期性を捉える。
また,訓練された agg-gnn の伝達可能性を示す置換不変性を提案する。
ベースライン法と比較して数値シミュレーションにより,我々の戦略を検証した。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Accelerating Neural Network Training with Distributed Asynchronous and
Selective Optimization (DASO) [0.0]
分散非同期および選択的最適化(DASO)手法を導入し、ネットワークトレーニングを加速します。
DASOは、ノードローカルおよびグローバルネットワークで構成される階層型および非同期通信スキームを使用する。
DASOは従来のネットワークや最先端ネットワークで最大34%のトレーニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2021-04-12T16:02:20Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Consensus Driven Learning [0.0]
本稿では,信頼できないネットワーク上での非同期更新を用いて,ノードのネットワークがトレーニングを調整できる分散分散型学習手法を提案する。
これは、様々なノードを調整するために、分散平均コンセンサスアルゴリズムからインスピレーションを得て達成される。
この調整手法により,高度に偏りのあるデータセットや間欠的な通信障害の存在下でモデルを学習できることを示す。
論文 参考訳(メタデータ) (2020-05-20T18:24:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。