論文の概要: Learning State-Augmented Policies for Information Routing in
Communication Networks
- arxiv url: http://arxiv.org/abs/2310.00248v2
- Date: Mon, 23 Oct 2023 00:39:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 07:07:46.182579
- Title: Learning State-Augmented Policies for Information Routing in
Communication Networks
- Title(参考訳): 通信ネットワークにおける情報ルーティングのための国家強化政策の学習
- Authors: Sourajit Das, Navid NaderiAlizadeh, Alejandro Ribeiro
- Abstract要約: 我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
- 参考スコア(独自算出の注目度): 92.59624401684083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper examines the problem of information routing in a large-scale
communication network, which can be formulated as a constrained statistical
learning problem having access to only local information. We delineate a novel
State Augmentation (SA) strategy to maximize the aggregate information at
source nodes using graph neural network (GNN) architectures, by deploying graph
convolutions over the topological links of the communication network. The
proposed technique leverages only the local information available at each node
and efficiently routes desired information to the destination nodes. We
leverage an unsupervised learning procedure to convert the output of the GNN
architecture to optimal information routing strategies. In the experiments, we
perform the evaluation on real-time network topologies to validate our
algorithms. Numerical simulations depict the improved performance of the
proposed method in training a GNN parameterization as compared to baseline
algorithms.
- Abstract(参考訳): 本稿では,ローカル情報のみにアクセスできる制約付き統計学習問題として定式化できる大規模通信ネットワークにおける情報ルーティングの問題について検討する。
本稿では,通信ネットワークのトポロジカルリンク上にグラフ畳み込みを配置することにより,gnn(graph neural network)アーキテクチャを用いて,ソースノードの集約情報を最大化する新しい状態拡張(sa)戦略を示す。
提案手法では,各ノードで利用可能なローカル情報のみを利用し,所望の情報を効率的に宛先ノードにルーティングする。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証する。
数値シミュレーションでは,GNNパラメータ化学習における提案手法の性能向上をベースラインアルゴリズムと比較した。
関連論文リスト
- Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
本稿では,グラフニューラルネットワーク(GNN)におけるメッセージ伝搬戦略の学習問題について検討する。
本稿では,GNNパラメータの最大類似度推定を支援するために,最適伝搬ステップを潜時変数として導入する。
提案フレームワークは,GNNにおけるメッセージのパーソナライズおよび解釈可能な伝達戦略を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-10-01T15:09:59Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
本稿では,新たなリンクアウトプットGNN(LOGNN)ベースの資源管理手法を提案し,MECにおける資源割り当てを柔軟に最適化する。
論文 参考訳(メタデータ) (2023-06-15T08:21:41Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
我々は強化学習(RL)を利用したモデルフリーでデータ駆動型ルーティング戦略を開発する。
ネットワークトポロジのグラフ特性を考慮すると、グラフニューラルネットワーク(GNN)と組み合わせたマルチエージェントRLフレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-28T06:20:34Z) - GDDR: GNN-based Data-Driven Routing [0.0]
グラフニューラルネットワーク(GNN)を用いたアプローチは、多層パーセプトロンアーキテクチャを用いた以前の作業と同様に、少なくとも実行できることを示した。
GNNには、トレーニングされたエージェントを、余分な作業なしで異なるネットワークトポロジに一般化できるというメリットが加えられている。
論文 参考訳(メタデータ) (2021-04-20T12:12:17Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
集約グラフニューラルネットワーク(Agg-GNN)に基づく教師なし学習手法を設計する。
アクティベーションパターンを各ノードの特徴としてモデル化し,ポリシーに基づくリソース割り当て手法を訓練することにより,非同期性を捉える。
論文 参考訳(メタデータ) (2020-11-05T03:38:36Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。