The probabilistic world
- URL: http://arxiv.org/abs/2011.02867v3
- Date: Fri, 25 Oct 2024 09:48:56 GMT
- Title: The probabilistic world
- Authors: C. Wetterich,
- Abstract summary: We show that cellular automata are quantum systems in a formulation with discrete time steps and real wave functions.
The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable.
- Score: 0.0
- License:
- Abstract: Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.
Related papers
- The probabilistic world II : Quantum mechanics from classical statistics [0.0]
A simple neuromorphic computer based on neurons in an active or quiet state within a probabilistic environment can learn the unitary transformations of an entangled two-qubit system.
Our explicit constructions constitute a proof that no-go theorems for the embedding of quantum mechanics in classical statistics are circumvented.
arXiv Detail & Related papers (2024-08-09T14:02:55Z) - Quantum Systems from Random Probabilistic Automata [0.0]
Probabilistic cellular automata with deterministic updating are quantum systems.
We find particular initial probability which distributions reemerge periodically after a certain number of time steps.
Conservation of energy and momentum are essential ingredients for the understanding of the evolution of our probabilistic automata.
arXiv Detail & Related papers (2024-05-16T06:06:04Z) - Full Counting Statistics of Charge in Quenched Quantum Gases [0.0]
We study the full counting statistics of particle number in one dimensional interacting Bose and Fermi gases.
We show that the scaled cumulants of the charge in the initial state and at long times are simply related.
arXiv Detail & Related papers (2023-12-05T18:00:36Z) - Canonical typicality under general quantum channels [39.58317527488534]
In the present work we employ quantum channels to define generalized subsystems.
We show that generalized subsystems also display the phenomena of canonical typicality.
In particular we demonstrate that the property regulating the emergence of the canonical typicality behavior is the entropy of the channel used to define the generalized subsystem.
arXiv Detail & Related papers (2023-08-30T21:29:45Z) - Probabilistic Unitary Formulation of Open Quantum System Dynamics [3.8326963933937885]
We show that for any continuously evolving open quantum system, its dynamics can be described by a time-dependent Hamiltonian and probabilistic combinations of up to $d-1$.
The formalism provides a scheme to control a quantum state to evolve along designed quantum trajectories, and can be particularly useful in quantum computing and quantum simulation scenes.
arXiv Detail & Related papers (2023-07-11T20:07:03Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Learning Energy-Based Representations of Quantum Many-Body States [14.781921087738969]
An ideal representation of a quantum state combines a succinct characterization informed by the system's structure and symmetries, along with the ability to predict the physical observables of interest.
Here, we propose a new generative energy-based representation of quantum many-body states derived from Gibbs distributions used for modeling the thermal states of classical spin systems.
Our results show that such a representation can be efficiently learned from data using exact algorithms in a form that enables the prediction of expectation values of physical observables.
arXiv Detail & Related papers (2023-04-08T16:01:44Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Quantum fermions from classical bits [0.0]
A simple cellular automaton is shown to be equivalent to a relativistic fermionic quantum field theory with interactions.
The automaton acts deterministically on bit configurations.
arXiv Detail & Related papers (2021-06-29T15:47:40Z) - Learning with Density Matrices and Random Features [44.98964870180375]
A density matrix describes the statistical state of a quantum system.
It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems.
This paper explores how density matrices can be used as a building block for machine learning models.
arXiv Detail & Related papers (2021-02-08T17:54:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.