Full Counting Statistics of Charge in Quenched Quantum Gases
- URL: http://arxiv.org/abs/2312.02929v2
- Date: Tue, 2 Apr 2024 13:11:10 GMT
- Title: Full Counting Statistics of Charge in Quenched Quantum Gases
- Authors: David X. Horvath, Colin Rylands,
- Abstract summary: We study the full counting statistics of particle number in one dimensional interacting Bose and Fermi gases.
We show that the scaled cumulants of the charge in the initial state and at long times are simply related.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unless constrained by symmetry, measurement of an observable on an ensemble of identical quantum systems returns a distribution of values which are encoded in the full counting statistics. While the mean value of this distribution is important for determining certain properties of a system, the full distribution can also exhibit universal behavior. In this paper we study the full counting statistics of particle number in one dimensional interacting Bose and Fermi gases which have been quenched far from equilibrium. In particular we consider the time evolution of the Lieb-Liniger and Gaudin-Yang models quenched from a Bose-Einstein condensate initial state and calculate the full counting statistics of the particle number within a subsystem. We show that the scaled cumulants of the charge in the initial state and at long times are simply related and in particular the latter are independent of the model parameters. Using the quasi-particle picture we obtain the full time evolution of the cumulants and find that although their endpoints are fixed, the finite time dynamics depends strongly on the model parameters. We go on to construct the scaled cumulant generating functions and from this determine the limiting charge probability distributions at long time which are shown to exhibit distinct non-trivial and non-Gaussian fluctuations and large deviations.
Related papers
- Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Time evolution of spread complexity and statistics of work done in
quantum quenches [0.0]
Lanczos coefficients corresponding to evolution under the post-quench Hamiltonian.
Average work done on the system, its variance, as well as the higher order cumulants.
arXiv Detail & Related papers (2023-04-19T13:21:32Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Nonequilibrium Full Counting Statistics and Symmetry-Resolved
Entanglement from Space-Time Duality [0.0]
We consider the evolution of the full counting statistics (FCS) and of the charged moments of a U(1) charge truncated to a finite region after a global quantum quench.
We show that whenever the initial state is also U(1), the leading order in time of FCS and charged moments in the out-of-equilibrium regime can be determined by means of a space-time duality.
arXiv Detail & Related papers (2022-12-12T19:04:38Z) - Nonparametric and Regularized Dynamical Wasserstein Barycenters for
Sequential Observations [16.05839190247062]
We consider probabilistic models for sequential observations which exhibit gradual transitions among a finite number of states.
We numerically solve a finite dimensional estimation problem using cyclic descent alternating between updates to the pure-state quantile functions and the barycentric weights.
We demonstrate the utility of the proposed algorithm in segmenting both simulated and real world human activity time series.
arXiv Detail & Related papers (2022-10-04T21:39:55Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Relaxation of non-integrable systems and correlation functions [0.0]
We investigate early-time equilibration rates of observables in closed many-body quantum systems.
We find evidence for this coincidence when the initial conditions are sufficiently generic, or typical.
Our findings are confirmed by proving that these different timescales coincide for dynamics generated by Haar-random Hamiltonians.
arXiv Detail & Related papers (2021-12-17T12:34:34Z) - Quantum unitary evolution interspersed with repeated non-unitary
interactions at random times: The method of stochastic Liouville equation,
and two examples of interactions in the context of a tight-binding chain [0.0]
We provide two explicit applications of the formalism in the context of the so-called tight-binding model relevant in various contexts in solid-state physics.
We consider two forms of interactions: reset of quantum dynamics, in which the density operator is at random times reset to its initial form, and projective measurements performed on the system at random times.
arXiv Detail & Related papers (2021-06-27T09:55:13Z) - Entanglement Measures in a Nonequilibrium Steady State: Exact Results in
One Dimension [0.0]
Entanglement plays a prominent role in the study of condensed matter many-body systems.
We show that the scaling of entanglement with the length of a subsystem is highly unusual, containing both a volume-law linear term and a logarithmic term.
arXiv Detail & Related papers (2021-05-03T10:35:09Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.