論文の概要: Low-Complexity Models for Acoustic Scene Classification Based on
Receptive Field Regularization and Frequency Damping
- arxiv url: http://arxiv.org/abs/2011.02955v1
- Date: Thu, 5 Nov 2020 16:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 11:22:38.202444
- Title: Low-Complexity Models for Acoustic Scene Classification Based on
Receptive Field Regularization and Frequency Damping
- Title(参考訳): 音場規則化と周波数減衰に基づく音響シーン分類のための低複雑さモデル
- Authors: Khaled Koutini, Florian Henkel, Hamid Eghbal-zadeh, Gerhard Widmer
- Abstract要約: ニューラルネットワークにおけるパラメータ数を削減するために,よく知られた手法をいくつか検討し,比較する。
我々は、受容場に特定の制約を適用することで、高い性能の低複雑性モデルを実現することができることを示す。
本稿では,モデルのRFを規則化するためのフィルタ減衰手法を提案する。
- 参考スコア(独自算出の注目度): 7.0349768355860895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks are known to be very demanding in terms of computing and
memory requirements. Due to the ever increasing use of embedded systems and
mobile devices with a limited resource budget, designing low-complexity models
without sacrificing too much of their predictive performance gained great
importance. In this work, we investigate and compare several well-known methods
to reduce the number of parameters in neural networks. We further put these
into the context of a recent study on the effect of the Receptive Field (RF) on
a model's performance, and empirically show that we can achieve high-performing
low-complexity models by applying specific restrictions on the RFs, in
combination with parameter reduction methods. Additionally, we propose a
filter-damping technique for regularizing the RF of models, without altering
their architecture and changing their parameter counts. We will show that
incorporating this technique improves the performance in various low-complexity
settings such as pruning and decomposed convolution. Using our proposed filter
damping, we achieved the 1st rank at the DCASE-2020 Challenge in the task of
Low-Complexity Acoustic Scene Classification.
- Abstract(参考訳): ディープニューラルネットワークは、計算とメモリ要求の観点から非常に要求されていることが知られている。
組み込みシステムやモバイルデバイスが資源予算が限られているため、予測性能を犠牲にすることなく低複雑さのモデルを設計することが重要になった。
本研究では,ニューラルネットワークにおけるパラメータ数を削減するためのよく知られた手法について検討・比較する。
さらに、モデルの性能に対する受容場(RF)の影響に関する最近の研究の文脈にも適用し、パラメータ還元法と組み合わせて、RFに特定の制約を適用して高い性能の低複雑さモデルを実現することを実証的に示す。
さらに,モデルのRFを正規化するためのフィルタ減衰手法を提案する。
この手法を組み込むことで、プルーニングや分解畳み込みといった様々な低複雑さ設定のパフォーマンスが向上することを示す。
提案手法を用いて,低複雑音響シーン分類の課題として,DCASE-2020 Challengeで第1位を獲得した。
関連論文リスト
- FreqMixFormerV2: Lightweight Frequency-aware Mixed Transformer for Human Skeleton Action Recognition [9.963966059349731]
FreqMixForemrV2は、微妙で差別的なアクションを特定するために、周波数対応のMixed Transformer(FreqMixFormer)上に構築されている。
提案手法は, 精度と効率のバランスが良く, パラメータの60%しか持たない最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-12-29T23:52:40Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Efficient Learning With Sine-Activated Low-rank Matrices [25.12262017296922]
低ランク分解過程に正弦波関数を統合する新しい理論枠組みを提案する。
提案手法は,視覚変換器(ViT),Large Language Models(LLMs),NeRF(Neural Radiance Fields),および3次元形状モデリング(3D shape modelling)において,既存の低ランクモデルに対するプラグインとして証明されている。
論文 参考訳(メタデータ) (2024-03-28T08:58:20Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
ソースドメインへのオーバーフィッティングは、ディープニューラルネットワークの勾配に基づくトレーニングにおいて一般的な問題である。
本稿では,ネットワークパラメータの勾配-信号-雑音比(GSNR)を選択することを提案する。
論文 参考訳(メタデータ) (2023-10-11T10:21:34Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Phantom Embeddings: Using Embedding Space for Model Regularization in
Deep Neural Networks [12.293294756969477]
機械学習モデルの強みは、データから複雑な関数近似を学ぶ能力に起因している。
複雑なモデルはトレーニングデータを記憶する傾向があり、結果としてテストデータの正規化性能が低下する。
情報豊富な潜伏埋め込みと高いクラス内相関を利用してモデルを正規化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-14T17:15:54Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。