論文の概要: DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations
- arxiv url: http://arxiv.org/abs/2401.12517v2
- Date: Wed, 20 Mar 2024 11:24:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 21:48:20.121829
- Title: DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations
- Title(参考訳): DDMI:高次命令型ニューラル表現の合成のためのドメイン非依存遅延拡散モデル
- Authors: Dogyun Park, Sihyeon Kim, Sojin Lee, Hyunwoo J. Kim,
- Abstract要約: INRのドメインに依存しない潜在拡散モデルは、ニューラルネットワークの重みの代わりに適応的な位置埋め込みを生成する。
離散データと連続信号関数をシームレスに接続する分割連続空間変分自動エンコーダ(D2C-VAE)を開発した。
例えば、2D画像、3D形状、ニューラルラジアンスフィールド、ビデオの4つのモードにわたる実験では、7つのベンチマークデータセットがDDMIの汎用性を実証している。
- 参考スコア(独自算出の注目度): 13.357094648241839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies have introduced a new class of generative models for synthesizing implicit neural representations (INRs) that capture arbitrary continuous signals in various domains. These models opened the door for domain-agnostic generative models, but they often fail to achieve high-quality generation. We observed that the existing methods generate the weights of neural networks to parameterize INRs and evaluate the network with fixed positional embeddings (PEs). Arguably, this architecture limits the expressive power of generative models and results in low-quality INR generation. To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights. Specifically, we develop a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions in the shared latent space. Additionally, we introduce a novel conditioning mechanism for evaluating INRs with the hierarchically decomposed PEs to further enhance expressive power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI and its superior performance compared to the existing INR generative models.
- Abstract(参考訳): 近年の研究では、暗黙的神経表現(INR)を合成するための新しい生成モデルを導入し、様々な領域における任意の連続的な信号を捕捉している。
これらのモデルはドメインに依存しない生成モデルの扉を開いたが、しばしば高品質な生成を達成できなかった。
InRのパラメータ化と固定位置埋め込み(PE)によるネットワーク評価のために,既存の手法がニューラルネットワークの重みを生成することを観察した。
おそらく、このアーキテクチャは生成モデルの表現力を制限し、低品質のINR生成をもたらす。
この制限に対処するために、ニューラルネットワークの重みの代わりに適応的な位置埋め込みを生成するINR(DDMI)のためのドメインに依存しない潜在拡散モデルを提案する。
具体的には、離散データと共有潜在空間内の連続信号関数をシームレスに接続する離散連続空間変分自動エンコーダ(D2C-VAE)を開発する。
さらに,INRを階層的に分解したPEを用いて評価し,表現力を高めるための新しい条件付け機構を導入する。
例えば、2D画像、3D形状、ニューラルレーダランスフィールド、ビデオの4つのモードにわたる大規模な実験は、7つのベンチマークデータセットを用いて、既存のINR生成モデルと比較してDDMIの汎用性と優れたパフォーマンスを実証している。
関連論文リスト
- POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NASが登場し、データセット依存からタスク依存への探索プロセスを一般化した。
本稿では多目的拡散プロセスを通じて拡散NAGを拡張するPOMONAGを紹介する。
結果は、NAS201とMobileNetV3の2つの検索スペースで検証され、15の画像分類データセットで評価された。
論文 参考訳(メタデータ) (2024-09-30T16:05:29Z) - Diffusion-Based Generation of Neural Activity from Disentangled Latent Codes [1.9544534628180867]
本稿では,条件付き生成モデリングの進歩を生かしたニューラルデータ解析手法を提案する。
我々は,高情報付きコードに基づくニューラル・オブザーバ生成と呼ばれるモデルを時系列ニューラル・データに適用する。
VAEベースのシーケンシャルオートエンコーダと比較して、GNOCCHIは、鍵となる振る舞い変数に関してより明確に構造化され、よりゆがみのある高品質な潜在空間を学習する。
論文 参考訳(メタデータ) (2024-07-30T21:07:09Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - Fully Spiking Denoising Diffusion Implicit Models [61.32076130121347]
スパイキングニューラルネットワーク(SNN)は、超高速のニューロモルフィックデバイス上で走る能力のため、かなりの注目を集めている。
本研究では,SNN内で拡散モデルを構築するために,拡散暗黙モデル (FSDDIM) を完全にスパイクする新しい手法を提案する。
提案手法は,最先端の完全スパイク生成モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-04T09:07:09Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
本稿では,任意のスパース回帰手法を用いて,ディープラーニングに基づくサロゲートのスパースパターンを決定するモジュラーフレームワークを提案する。
異なるネットワークアーキテクチャと疎度推定器がモデル発見精度と収束性を,いくつかのベンチマーク例でどのように改善するかを示す。
論文 参考訳(メタデータ) (2020-11-09T11:02:40Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。