Efficient Hyperparameter Tuning with Dynamic Accuracy Derivative-Free
Optimization
- URL: http://arxiv.org/abs/2011.03151v1
- Date: Fri, 6 Nov 2020 00:59:51 GMT
- Title: Efficient Hyperparameter Tuning with Dynamic Accuracy Derivative-Free
Optimization
- Authors: Matthias J. Ehrhardt, Lindon Roberts
- Abstract summary: We apply a recent dynamic accuracy derivative-free optimization method to hyperparameter tuning.
This method allows inexact evaluations of the learning problem while retaining convergence guarantees.
We demonstrate its robustness and efficiency compared to a fixed accuracy approach.
- Score: 0.27074235008521236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning solutions are framed as optimization problems which
rely on good hyperparameters. Algorithms for tuning these hyperparameters
usually assume access to exact solutions to the underlying learning problem,
which is typically not practical. Here, we apply a recent dynamic accuracy
derivative-free optimization method to hyperparameter tuning, which allows
inexact evaluations of the learning problem while retaining convergence
guarantees. We test the method on the problem of learning elastic net weights
for a logistic classifier, and demonstrate its robustness and efficiency
compared to a fixed accuracy approach. This demonstrates a promising approach
for hyperparameter tuning, with both convergence guarantees and practical
performance.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - A Globally Convergent Gradient-based Bilevel Hyperparameter Optimization
Method [0.0]
We propose a gradient-based bilevel method for solving the hyperparameter optimization problem.
We show that the proposed method converges with lower computation and leads to models that generalize better on the testing set.
arXiv Detail & Related papers (2022-08-25T14:25:16Z) - Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression [19.401624974011746]
We propose a complexity regularization criterion based on a data dependent penalty, and discuss its efficient optimization.
Our analysis shows the benefit of the proposed approach, that we hence incorporate in a library for large scale kernel methods to derive adaptively tuned solutions.
arXiv Detail & Related papers (2022-01-17T09:57:32Z) - Hyper-parameter optimization based on soft actor critic and hierarchical
mixture regularization [5.063728016437489]
We model hyper- parameter optimization process as a Markov decision process, and tackle it with reinforcement learning.
A novel hyper- parameter optimization method based on soft actor critic and hierarchical mixture regularization has been proposed.
arXiv Detail & Related papers (2021-12-08T02:34:43Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Online Hyperparameter Search Interleaved with Proximal Parameter Updates [9.543667840503739]
We develop a method that relies on the structure of proximal gradient methods and does not require a smooth cost function.
Such a method is applied to Leave-one-out (LOO)-validated Lasso and Group Lasso.
Numerical experiments corroborate the convergence of the proposed method to a local optimum of the LOO validation error curve.
arXiv Detail & Related papers (2020-04-06T15:54:03Z) - Learning Adaptive Loss for Robust Learning with Noisy Labels [59.06189240645958]
Robust loss is an important strategy for handling robust learning issue.
We propose a meta-learning method capable of robust hyper tuning.
Four kinds of SOTA loss functions are attempted to be minimization, general availability and effectiveness.
arXiv Detail & Related papers (2020-02-16T00:53:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.