Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization
- URL: http://arxiv.org/abs/2311.13087v1
- Date: Wed, 22 Nov 2023 01:32:06 GMT
- Title: Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization
- Authors: James Kotary, Vincenzo Di Vito, Jacob Christopher, Pascal Van
Hentenryck, Ferdinando Fioretto
- Abstract summary: Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
- Score: 59.386153202037086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world decision processes are modeled by optimization problems whose
defining parameters are unknown and must be inferred from observable data. The
Predict-Then-Optimize framework uses machine learning models to predict unknown
parameters of an optimization problem from features before solving. Recent
works show that decision quality can be improved in this setting by solving and
differentiating the optimization problem in the training loop, enabling
end-to-end training with loss functions defined directly on the resulting
decisions. However, this approach can be inefficient and requires handcrafted,
problem-specific rules for backpropagation through the optimization step. This
paper proposes an alternative method, in which optimal solutions are learned
directly from the observable features by predictive models. The approach is
generic, and based on an adaptation of the Learning-to-Optimize paradigm, from
which a rich variety of existing techniques can be employed. Experimental
evaluations show the ability of several Learning-to-Optimize methods to provide
efficient, accurate, and flexible solutions to an array of challenging
Predict-Then-Optimize problems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Feature-Based Interpretable Surrogates for Optimization [0.8437187555622164]
In this work, we investigate how we can use more general optimization rules to increase interpretability.
The proposed rules do not map to a concrete solution but to a set of solutions characterized by common features.
In particular, we demonstrate the improvement in solution quality that our approach offers compared to existing interpretable surrogates for optimization.
arXiv Detail & Related papers (2024-09-03T13:12:49Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
We propose a new framework directly integrating predictive tasks under prescriptive tasks.
We train the parameters of predictive algorithm within a prescription problem via bilevel optimization techniques.
arXiv Detail & Related papers (2021-01-02T02:43:10Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.