論文の概要: Towards Obfuscated Malware Detection for Low Powered IoT Devices
- arxiv url: http://arxiv.org/abs/2011.03476v1
- Date: Fri, 6 Nov 2020 17:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 05:52:22.732161
- Title: Towards Obfuscated Malware Detection for Low Powered IoT Devices
- Title(参考訳): 低消費電力IoTデバイスの難読マルウェア検出に向けて
- Authors: Daniel Park, Hannah Powers, Benji Prashker, Leland Liu and B\"ulent
Yener
- Abstract要約: IoTとエッジデバイスは、マルウェアの作者にとって新たな脅威となる。
計算能力とストレージ容量が限られているため、これらのシステムに最先端のマルウェア検知器を配備することは不可能である。
そこで本稿では,Opcodeトレースから構築したMarkov行列から,不正かつ難解なマルウェア検出のための低コストな特徴を抽出する手法を提案する。
- 参考スコア(独自算出の注目度): 0.11417805445492081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increased deployment of IoT and edge devices into commercial and
user networks, these devices have become a new threat vector for malware
authors. It is imperative to protect these devices as they become more
prevalent in commercial and personal networks. However, due to their limited
computational power and storage space, especially in the case of
battery-powered devices, it is infeasible to deploy state-of-the-art malware
detectors onto these systems. In this work, we propose using and extracting
features from Markov matrices constructed from opcode traces as a low cost
feature for unobfuscated and obfuscated malware detection. We empirically show
that our approach maintains a high detection rate while consuming less power
than similar work.
- Abstract(参考訳): IoTとエッジデバイスが商用およびユーザネットワークにデプロイされることで、これらのデバイスはマルウェア作者にとって新たな脅威となる。
商用およびパーソナルネットワークで普及するにつれて、これらのデバイスを保護することが不可欠である。
しかし、計算能力とストレージ容量が限られており、特にバッテリー駆動デバイスの場合、これらのシステムに最先端のマルウェア検出装置を配置することは不可能である。
本研究では,オプコードトレースから構築したマルコフ行列の特徴を,不正かつ難解なマルウェア検出のための低コストな特徴として利用し,抽出することを提案する。
我々は,本手法が類似作業よりも低消費電力で高い検出率を維持することを実証的に示す。
関連論文リスト
- Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization [0.6856683556201506]
本研究では,IoTデバイスに適したマルウェア検出手法を提案する。
リソースの可用性、進行中のワークロード、通信コストに基づいて、マルウェア検出タスクはデバイス上で動的に割り当てられるか、隣接するIoTノードにオフロードされる。
実験結果から,本手法はデバイス上での推測に比べて9.8倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2024-04-12T20:51:25Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Machine learning-based malware detection for IoT devices using
control-flow data [0.0]
マルウェア検出のための実行ファイルの制御フロー関連データの適用性について検討する。
本稿では,2段階のマルウェア検出手法を提案する。第1フェーズでは,静的バイナリ解析を用いて制御フロー関連データを抽出する。
第2フェーズでは、ニューラルネットワークモデルを使用してバイナリ実行ファイルを悪意または良性のいずれかとして分類する。
論文 参考訳(メタデータ) (2023-11-20T08:43:09Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2023-02-11T15:48:16Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
IoTデバイスのセキュリティ面は幼児の分野です。
ネットワーク上の特定のIoTノードの悪意ある振る舞いを認識するシステムを開発した。
畳み込みニューラルネットワークと監視により、ネットワーク内にインストール可能な中央ノードを使用して、IoTのマルウェア検出が可能になった。
論文 参考訳(メタデータ) (2020-10-13T10:56:33Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。