論文の概要: Sequential Embedding-based Attentive (SEA) classifier for malware
classification
- arxiv url: http://arxiv.org/abs/2302.05728v1
- Date: Sat, 11 Feb 2023 15:48:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 19:02:06.965956
- Title: Sequential Embedding-based Attentive (SEA) classifier for malware
classification
- Title(参考訳): マルウェア分類のためのシーケンシャル・エンベディング・ベース・アテンテーティブ(SEA)分類器
- Authors: Muhammad Ahmed, Anam Qureshi, Jawwad Ahmed Shamsi, Murk Marvi
- Abstract要約: 我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
- 参考スコア(独自算出の注目度): 1.290382979353427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tremendous growth in smart devices has uplifted several security threats.
One of the most prominent threats is malicious software also known as malware.
Malware has the capability of corrupting a device and collapsing an entire
network. Therefore, its early detection and mitigation are extremely important
to avoid catastrophic effects. In this work, we came up with a solution for
malware detection using state-of-the-art natural language processing (NLP)
techniques. Our main focus is to provide a lightweight yet effective classifier
for malware detection which can be used for heterogeneous devices, be it a
resource constraint device or a resourceful machine. Our proposed model is
tested on the benchmark data set with an accuracy and log loss score of 99.13
percent and 0.04 respectively.
- Abstract(参考訳): スマートデバイスの急速な成長は、いくつかのセキュリティ脅威を高めた。
最も顕著な脅威の1つはマルウェアとして知られる悪意のあるソフトウェアである。
マルウェアはデバイスを破壊し、ネットワーク全体を崩壊させる能力を持つ。
そのため、破滅的な影響を避けるためには早期発見と緩和が極めて重要である。
本研究では,最先端自然言語処理(NLP)技術を用いたマルウェア検出手法を考案した。
当社の主な焦点は,リソース制約デバイスやリソースフルマシンなど,異種デバイスで使用可能なマルウェア検出のための軽量かつ効果的な分類器を提供することです。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - MALITE: Lightweight Malware Detection and Classification for Constrained Devices [1.8296825497899678]
各種マルウェア群を分類し,良質なバイナリと悪質なバイナリを区別可能な,軽量なマルウェア解析システムMALITEを提案する。
我々は、軽量ニューラルネットワークベースのアーキテクチャであるMALITE-MNと、スライドウィンドウから抽出したヒストグラム特徴を利用した超軽量なランダム森林ベースのMALITE-HRFを設計した。
その結果,MALITE-MNとMALITE-HRFはマルウェアを正確に識別・分類するだけでなく,数桁のリソースを消費することがわかった。
論文 参考訳(メタデータ) (2023-09-06T18:17:38Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
本稿は,Windowsオペレーティングシステム,すなわちWindows PEのファイル形式である,ポータブル実行可能(PE)のファイル形式に焦点をあてる。
まず、ML/DLに基づくWindows PEマルウェア検出の一般的な学習フレームワークについて概説する。
次に、PEマルウェアのコンテキストにおいて、敵攻撃を行うという3つのユニークな課題を強調した。
論文 参考訳(メタデータ) (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - A Survey of Machine Learning Algorithms for Detecting Malware in IoT
Firmware [0.0]
本稿では、IoTファームウェアの分類に機械学習アルゴリズムを多数使用し、最高のパフォーマンスモデルについて報告する。
ConvolutionalやFully Connected Neural Networksといったディープラーニングアプローチも検討されている。
論文 参考訳(メタデータ) (2021-11-03T17:55:51Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNNは、制限なく回避可能なマルウェアバリアントを自動的に生成する新しいアプローチです。
MalRNNは、3つの最近のディープラーニングベースのマルウェア検出器を効果的に回避し、現在のベンチマークメソッドを上回ります。
論文 参考訳(メタデータ) (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。