論文の概要: A Data-Driven Machine Learning Approach for Consumer Modeling with Load
Disaggregation
- arxiv url: http://arxiv.org/abs/2011.03519v1
- Date: Wed, 4 Nov 2020 13:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 23:24:00.385418
- Title: A Data-Driven Machine Learning Approach for Consumer Modeling with Load
Disaggregation
- Title(参考訳): 負荷分散を考慮した消費者モデリングのためのデータ駆動機械学習アプローチ
- Authors: A. Khaled Zarabie, Sanjoy Das, and Hongyu Wu
- Abstract要約: 本稿では,住宅利用者の消費データから導出したデータ駆動セミパラメトリックモデルの汎用クラスを提案する。
第1段階では、固定およびシフト可能なコンポーネントへの負荷の分散をハイブリッドアルゴリズムを用いて達成する。
第2段階では、モデルパラメータはL2ノルム、エプシロン非感受性回帰法を用いて推定される。
- 参考スコア(独自算出の注目度): 1.6058099298620423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While non-parametric models, such as neural networks, are sufficient in the
load forecasting, separate estimates of fixed and shiftable loads are
beneficial to a wide range of applications such as distribution system
operational planning, load scheduling, energy trading, and utility demand
response programs. A semi-parametric estimation model is usually required,
where cost sensitivities of demands must be known. Existing research work
consistently uses somewhat arbitrary parameters that seem to work best. In this
paper, we propose a generic class of data-driven semiparametric models derived
from consumption data of residential consumers. A two-stage machine learning
approach is developed. In the first stage, disaggregation of the load into
fixed and shiftable components is accomplished by means of a hybrid algorithm
consisting of non-negative matrix factorization (NMF) and Gaussian mixture
models (GMM), with the latter trained by an expectation-maximization (EM)
algorithm. The fixed and shiftable loads are subject to analytic treatment with
economic considerations. In the second stage, the model parameters are
estimated using an L2-norm, epsilon-insensitive regression approach. Actual
energy usage data of two residential customers show the validity of the
proposed method.
- Abstract(参考訳): ニューラルネットワークのような非パラメトリックモデルでは負荷予測に十分であるが,分散システムの運用計画,負荷スケジューリング,エネルギートレーディング,ユーティリティ要求応答プログラムなど,幅広いアプリケーションにおいて,固定およびシフト可能な負荷の別個の推定が有用である。
半パラメトリック推定モデルは通常、需要のコスト感性を知る必要がある。
既存の研究では、常に最適と思われるいくつかの任意パラメータが使われている。
本稿では,住宅利用者の消費データから導出したデータ駆動セミパラメトリックモデルの汎用クラスを提案する。
2段階機械学習アプローチが開発されている。
第一段階では、非負行列分解(NMF)とガウス混合モデル(GMM)からなるハイブリッドアルゴリズムを用いて、固定およびシフト可能なコンポーネントへの負荷の分散を達成し、後者は予測最大化(EM)アルゴリズムで訓練する。
固定およびシフト可能な負荷は、経済的に考慮された分析処理を受ける。
第2段階では、モデルパラメータをl2ノルム、エプシロン非感受性回帰法を用いて推定する。
住宅顧客2人の実エネルギー利用データから,提案手法の有効性を示す。
関連論文リスト
- Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
提案手法は,任意の長さの未知の負荷時間列に迅速に適応し,一般化することができる。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-09T18:59:08Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
この研究は、変数推論を用いて、意見力学 ABM のパラメータを推定する。
我々は推論プロセスを自動微分に適した最適化問題に変換する。
提案手法は, シミュレーションベース法とMCMC法より, マクロ的(有界信頼区間とバックファイア閾値)と微視的(200ドル, エージェントレベルの役割)の両方を正確に推定する。
論文 参考訳(メタデータ) (2024-03-08T14:45:18Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Toward Theoretical Guidance for Two Common Questions in Practical
Cross-Validation based Hyperparameter Selection [72.76113104079678]
クロスバリデーションに基づくハイパーパラメータ選択における2つの一般的な質問に対する最初の理論的治療について述べる。
これらの一般化は、少なくとも、常に再トレーニングを行うか、再トレーニングを行わないかを常に実行可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T16:37:12Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
疲労損傷を予測するための最大エントロピーの原理に基づくML近傍近似アルゴリズムを開発した。
予測は、他のMLアルゴリズムと同様、高いレベルの精度を達成する。
論文 参考訳(メタデータ) (2022-10-19T12:20:07Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Machine Learning based Framework for Robust Price-Sensitivity Estimation
with Application to Airline Pricing [20.5282398019991]
本稿では,機能依存型価格感度の存在下での製品の動的価格設定の問題について考察する。
価格関連部がパラメトリックなフレキシブルで解釈可能な需要モデルを構築した。
モデルの残りの部分(ニュアンス)は非パラメトリックであり、洗練されたML技術によってモデル化することができる。
論文 参考訳(メタデータ) (2022-05-04T03:35:12Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
マルコフ連鎖モンテカルロのようなサンプリングに基づくアプローチの使用は、それぞれの可能性評価が計算的に高価であるときに難解になる可能性がある。
変分推論と正規化フローを組み合わせた新しいアプローチは、潜在変数空間の次元と線形にしか成長しない計算コストによって特徴づけられる。
本稿では,ニューラルネットワークサロゲートモデルの正規化フローパラメータと重みを代わりに更新する最適化戦略である,適応サロゲートを用いた正規化フロー(NoFAS)を提案する。
論文 参考訳(メタデータ) (2021-08-28T14:31:45Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
性能向上のために冗長パラメータを再利用できるかどうかを検討する。
実験と分析は異なるデータセットとNTTアーキテクチャで体系的に行われる。
論文 参考訳(メタデータ) (2020-10-06T11:47:20Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。