論文の概要: Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach
- arxiv url: http://arxiv.org/abs/2406.05887v1
- Date: Sun, 9 Jun 2024 18:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 17:28:18.762238
- Title: Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach
- Title(参考訳): スマートグリッドにおけるデータスカシティ下での負荷予測 : メタラーニングアプローチ
- Authors: Georgios Tsoumplekas, Christos L. Athanasiadis, Dimitrios I. Doukas, Antonios Chrysopoulos, Pericles A. Mitkas,
- Abstract要約: 本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
提案手法は,任意の長さの未知の負荷時間列に迅速に適応し,一般化することができる。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
- 参考スコア(独自算出の注目度): 0.18641315013048293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the rapid expansion of smart grids and large volumes of data at the individual consumer level, there are still various cases where adequate data collection to train accurate load forecasting models is challenging or even impossible. This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting in the context of few-shot learning. Specifically, the proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length using only minimal training samples. In this context, the meta-learning model learns an optimal set of initial parameters for a base-level learner recurrent neural network. The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers. Despite the examined load series' short length, it produces accurate forecasts outperforming transfer learning and task-specific machine learning methods by $12.5\%$. To enhance robustness and fairness during model evaluation, a novel metric, mean average log percentage error, is proposed that alleviates the bias introduced by the commonly used MAPE metric. Finally, a series of studies to evaluate the model's robustness under different hyperparameters and time series lengths is also conducted, demonstrating that the proposed approach consistently outperforms all other models.
- Abstract(参考訳): スマートグリッドの急速な拡張と個々のコンシューマレベルでの大量のデータ収集にもかかわらず、正確な負荷予測モデルをトレーニングする適切なデータ収集が困難である、あるいは不可能である、など、さまざまなケースが存在する。
本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
具体的には、最小限のトレーニングサンプルのみを用いて、任意の長さの未知の負荷時間列に迅速に適応し、一般化することができる。
この文脈では、メタラーニングモデルはベースレベルの学習者再帰ニューラルネットワークの初期パラメータの最適セットを学習する。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
負荷系列の長さが短いにもかかわらず、転送学習およびタスク固有の機械学習手法よりも精度の高い予測を12.5\%$で生成する。
モデル評価におけるロバスト性や公平性を高めるため,MAPE測定値のバイアスを軽減する新しい平均ログパーセンテージ誤差を提案する。
最後に、異なるハイパーパラメータと時系列長でモデルのロバスト性を評価する一連の研究を行い、提案手法が他の全てのモデルより一貫して優れていることを示した。
関連論文リスト
- AALF: Almost Always Linear Forecasting [3.336367986372977]
単純なモデルではほとんどの場合十分な時間で十分であり,特定の予測に対してのみDeep Learning法を選択することで,予測性能を向上させることができる,と我々は主張する。
実世界の様々なデータセットに関する実証的研究により、我々の選択手法は、ほとんどの場合、最先端のオンラインモデル選択方法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-16T10:13:09Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Deep Learning-Based Cyber-Attack Detection Model for Smart Grids [6.642400003243118]
監視制御とデータ取得(SCADA)により、受信した負荷データに対するデータ完全性サイバー攻撃(DIA)を防止するために、人工知能に基づく新しいサイバー攻撃検出モデルを開発した。
提案モデルでは、まず回帰モデルを用いて負荷データを予測し、処理後、教師なし学習法を用いて処理データをクラスタ化する。
提案したEE-BiLSTM法は,他の2つの手法と比較して,より堅牢かつ高精度に動作可能である。
論文 参考訳(メタデータ) (2023-12-14T10:54:04Z) - Quick-Tune: Quickly Learning Which Pretrained Model to Finetune and How [62.467716468917224]
本稿では,最適事前学習モデルとハイパーパラメータを共同で探索し,微調整する手法を提案する。
本手法は,一連のデータセット上で,事前学習したモデルの性能に関する知識を伝達する。
得られたアプローチによって、新しいデータセットの正確な事前学習モデルを迅速に選択できることを実証的に実証する。
論文 参考訳(メタデータ) (2023-06-06T16:15:26Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Real-time Forecast Models for TBM Load Parameters Based on Machine
Learning Methods [6.247628933072029]
本論文では, TBM運用データに基づいて機械学習(ML)手法を用いて, TBM負荷パラメータのリアルタイム予測モデルを構築する。
モデル複雑性を低減し、一般化を改善するため、予測タスクの本質的特徴を抽出するために、最小絶対縮小および選択法(Lasso)を適用した。
論文 参考訳(メタデータ) (2021-04-12T07:31:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z) - Reinforcement Learning based dynamic weighing of Ensemble Models for
Time Series Forecasting [0.8399688944263843]
データモデリングのために選択されたモデルが(線形/非線形、静的/動的)異なるモデルと独立(最小相関)モデルである場合、予測の精度が向上することが知られている。
アンサンブルモデルを重み付けするために文献で提案された様々なアプローチは、静的な重みセットを使用する。
この問題に対処するため、Reinforcement Learning (RL)アプローチでは、各モデルの重み付けを異なるタイミングで動的に割り当て、更新する。
論文 参考訳(メタデータ) (2020-08-20T10:40:42Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。