論文の概要: Reactive motion planning with probabilistic safety guarantees
- arxiv url: http://arxiv.org/abs/2011.03590v2
- Date: Thu, 26 Nov 2020 00:07:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 05:52:02.705246
- Title: Reactive motion planning with probabilistic safety guarantees
- Title(参考訳): 確率的安全性保証によるリアクティブ動作計画
- Authors: Yuxiao Chen, Ugo Rosolia, Chuchu Fan, Aaron D. Ames, and Richard
Murray
- Abstract要約: 本稿では,複数の非制御エージェントを用いた環境における動作計画の問題点について考察する。
制御されていないエージェントの予測モデルは、シナリオに基づいて短い地平線内で全ての可能な軌道を予測するために訓練される。
提案手法は,自動運転を模擬したシナリオにおいてシミュレーションで実証される。
- 参考スコア(独自算出の注目度): 27.91467018272684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion planning in environments with multiple agents is critical to many
important autonomous applications such as autonomous vehicles and assistive
robots. This paper considers the problem of motion planning, where the
controlled agent shares the environment with multiple uncontrolled agents.
First, a predictive model of the uncontrolled agents is trained to predict all
possible trajectories within a short horizon based on the scenario. The
prediction is then fed to a motion planning module based on model predictive
control. We proved generalization bound for the predictive model using three
different methods, post-bloating, support vector machine (SVM), and conformal
analysis, all capable of generating stochastic guarantees of the correctness of
the predictor. The proposed approach is demonstrated in simulation in a
scenario emulating autonomous highway driving.
- Abstract(参考訳): 複数のエージェントを持つ環境での運動計画は、自動運転車や補助ロボットのような多くの重要な自律的アプリケーションにとって重要である。
本稿では,制御エージェントが複数の非制御エージェントと環境を共有できるモーションプランニングの問題について考察する。
まず、制御されていないエージェントの予測モデルを訓練し、シナリオに基づいて短い地平線内で全ての可能な軌道を予測する。
予測はモデル予測制御に基づいて動作計画モジュールに送信される。
予測モデルの一般化は,ポストブローミング,サポートベクターマシン(svm),コンフォメーション解析の3つの方法によって達成され,いずれも予測者の正しさの確率的保証を生成できることを示した。
提案手法は,自動運転のシナリオを模擬したシミュレーションで実証された。
関連論文リスト
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Interpretable and Flexible Target-Conditioned Neural Planners For
Autonomous Vehicles [22.396215670672852]
以前の作業では、1つの計画軌跡を見積もることしか学ばず、現実のシナリオでは複数の許容可能な計画が存在する場合もあります。
本稿では,自律走行車における鳥の視線における複数の潜在的目標を効果的に表現する,熱マップを回帰する解釈可能なニューラルプランナーを提案する。
Lyft Openデータセットの体系的な評価から、当社のモデルは、以前の作業よりも安全で柔軟な運転パフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-09-23T22:13:03Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - ScePT: Scene-consistent, Policy-based Trajectory Predictions for
Planning [32.71073060698739]
軌道予測は、制御されていないエージェントと環境を共有する自律システムにとって重要である。
政策計画に基づく軌道予測モデルであるScePTを提案する。
明示的にシーンの一貫性を強制し、条件付き予測に使用できるエージェントインタラクションポリシーを学ぶ。
論文 参考訳(メタデータ) (2022-06-18T00:00:02Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - Scene Transformer: A unified multi-task model for behavior prediction
and planning [42.758178896204036]
実世界の運転環境における全てのエージェントの行動予測モデルを定式化する。
近年の言語モデリングアプローチにインスパイアされた我々は、マスキング戦略をモデルに対するクエリとして使用しています。
我々は,行動予測のための自律走行データセットに対するアプローチを評価し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-06-15T20:20:44Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
エージェント間の相互作用と将来のシーン構造を予測するIPC(Instance-Aware Predictive Control)アプローチを提案する。
我々は,ego中心の視点でエージェント間のインタラクションを推定するために,新しいマルチインスタンスイベント予測モジュールを採用する。
シーンレベルとインスタンスレベルの両方の予測状態をより有効活用するために、一連のアクションサンプリング戦略を設計します。
論文 参考訳(メタデータ) (2021-01-14T22:21:25Z) - MATS: An Interpretable Trajectory Forecasting Representation for
Planning and Control [46.86174832000696]
人間の動きに関する推論は、現代の人間ロボットの対話システムの中核的な構成要素である。
自律システムにおける行動予測の主な用途の1つは、ロボットの動作計画と制御を知らせることである。
本稿では,下流の計画や制御に適するトラジェクトリ予測のための新しい出力表現を提案する。
論文 参考訳(メタデータ) (2020-09-16T07:32:37Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。