Lipkin model on a quantum computer
- URL: http://arxiv.org/abs/2011.04097v4
- Date: Sat, 18 Sep 2021 17:47:33 GMT
- Title: Lipkin model on a quantum computer
- Authors: Michael J. Cervia, A. B. Balantekin, S. N. Coppersmith, Calvin W.
Johnson, Peter J. Love, C. Poole, K. Robbins, M. Saffman
- Abstract summary: We develop circuits to implement variational quantum eigensolver (VQE) algorithms for the Lipkin-Meshkov-Glick model.
We present quantum circuits for VQE for two and three particles and discuss the construction of circuits for more particles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Atomic nuclei are important laboratories for exploring and testing new
insights into the universe, such as experiments to directly detect dark matter
or explore properties of neutrinos. The targets of interest are often heavy,
complex nuclei that challenge our ability to reliably model them (as well as
quantify the uncertainty of those models) with classical computers. Hence there
is great interest in applying quantum computation to nuclear structure for
these applications. As an early step in this direction, especially with regards
to the uncertainties in the relevant quantum calculations, we develop circuits
to implement variational quantum eigensolver (VQE) algorithms for the
Lipkin-Meshkov-Glick model, which is often used in the nuclear physics
community as a testbed for many-body methods. We present quantum circuits for
VQE for two and three particles and discuss the construction of circuits for
more particles. Implementing the VQE for a two-particle system on the IBM
Quantum Experience, we identify initialization and two-qubit gates as the
largest sources of error. We find that error mitigation procedures reduce the
errors in the results significantly, but additional quantum hardware
improvements are needed for quantum calculations to be sufficiently accurate to
be competitive with the best current classical methods.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
We introduce a new software model for quantum neuromorphic computing.
We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN) and a quantum spiking convolutional neural network (QSCNN)
arXiv Detail & Related papers (2024-07-23T11:38:06Z) - Rapidly Achieving Chemical Accuracy with Quantum Computing Enforced Language Model [22.163742052849432]
QiankunNet-VQE is a transformer based language models enforced with quantum computing to learn and generate quantum states.
It has been implemented using up to 12 qubits and attaining an accuracy level competitive with state-of-the-art classical methods.
arXiv Detail & Related papers (2024-05-15T07:50:57Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Towards understanding the power of quantum kernels in the NISQ era [79.8341515283403]
We show that the advantage of quantum kernels is vanished for large size datasets, few number of measurements, and large system noise.
Our work provides theoretical guidance of exploring advanced quantum kernels to attain quantum advantages on NISQ devices.
arXiv Detail & Related papers (2021-03-31T02:41:36Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
arXiv Detail & Related papers (2021-03-15T16:25:36Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.