VQE Method: A Short Survey and Recent Developments
- URL: http://arxiv.org/abs/2103.08505v2
- Date: Mon, 30 Aug 2021 19:58:25 GMT
- Title: VQE Method: A Short Survey and Recent Developments
- Authors: Dmitry A. Fedorov, Bo Peng, Niranjan Govind and Yuri Alexeev
- Abstract summary: The variational quantum eigensolver (VQE) is a method that uses a hybrid quantum-classical computational approach to find eigenvalues and eigenvalues of a Hamiltonian.
VQE has been successfully applied to solve the electronic Schr"odinger equation for a variety of small molecules.
Modern quantum computers are not capable of executing deep quantum circuits produced by using currently available ansatze.
- Score: 5.9640499950316945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The variational quantum eigensolver (VQE) is a method that uses a hybrid
quantum-classical computational approach to find eigenvalues and eigenvalues of
a Hamiltonian. VQE has been proposed as an alternative to fully quantum
algorithms such as quantum phase estimation because fully quantum algorithms
require quantum hardware that will not be accessible in the near future. VQE
has been successfully applied to solve the electronic Schr\"{o}dinger equation
for a variety of small molecules. However, the scalability of this method is
limited by two factors: the complexity of the quantum circuits and the
complexity of the classical optimization problem. Both of these factors are
affected by choice of the variational ansatz used to represent the trial wave
function. Hence, the construction of efficacious ansatz is an active area of
research. Put another way, modern quantum computers are not capable of
executing deep quantum circuits produced by using currently available ansatze
for problems that map onto more than several qubits. In this review, we present
recent developments in the field of designing effective ansatzes that fall into
two categories -- chemistry inspired and hardware efficient -- that produce
quantum circuits that are easier to run on modern hardware. We discuss the
shortfalls of ansatzes originally formulated for VQE simulations, how they are
addressed in more sophisticated methods, and the potential ways for further
improvements.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Rapidly Achieving Chemical Accuracy with Quantum Computing Enforced Language Model [22.163742052849432]
QiankunNet-VQE is a transformer based language models enforced with quantum computing to learn and generate quantum states.
It has been implemented using up to 12 qubits and attaining an accuracy level competitive with state-of-the-art classical methods.
arXiv Detail & Related papers (2024-05-15T07:50:57Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - The Variational Quantum Eigensolver: a review of methods and best
practices [3.628860803653535]
The variational quantum eigensolver (or VQE) uses the variational principle to compute the ground state energy of a Hamiltonian.
This review aims to provide an overview of the progress that has been made on the different parts of the algorithm.
arXiv Detail & Related papers (2021-11-09T14:40:18Z) - Molecular Excited State Calculations with Adaptive Wavefunctions on a
Quantum Eigensolver Emulation: Reducing Circuit Depth and Separating Spin
States [0.0]
Variational Quantum Deflation (VQD) is an extension of the Variational Quantum Eigensolver (VQE) for calculating electronic excited state energies.
We investigate the use of adaptive quantum circuit growth (ADAPT-VQE) in excited state VQD calculations.
arXiv Detail & Related papers (2021-05-21T10:59:29Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.