論文の概要: Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships
- arxiv url: http://arxiv.org/abs/2011.04251v2
- Date: Wed, 24 Mar 2021 17:33:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 01:45:31.557737
- Title: Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships
- Title(参考訳): 潜在状態推論と時空間関係を考慮した自律走行のための強化学習
- Authors: Xiaobai Ma, Jiachen Li, Mykel J. Kochenderfer, David Isele, Kikuo
Fujimura
- Abstract要約: 強化学習フレームワークにおける潜伏状態の明示的に推測と空間的時間的関係の符号化は,この課題に対処する上で有効であることを示す。
我々は、強化学習者と教師付き学習者を組み合わせた枠組みにより、他の運転者の潜伏状態に関する事前知識を符号化する。
提案手法は,最先端のベースラインアプローチと比較して,T区間のナビゲーションにおける性能を著しく向上させる。
- 参考スコア(独自算出の注目度): 46.965260791099986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (DRL) provides a promising way for learning
navigation in complex autonomous driving scenarios. However, identifying the
subtle cues that can indicate drastically different outcomes remains an open
problem with designing autonomous systems that operate in human environments.
In this work, we show that explicitly inferring the latent state and encoding
spatial-temporal relationships in a reinforcement learning framework can help
address this difficulty. We encode prior knowledge on the latent states of
other drivers through a framework that combines the reinforcement learner with
a supervised learner. In addition, we model the influence passing between
different vehicles through graph neural networks (GNNs). The proposed framework
significantly improves performance in the context of navigating T-intersections
compared with state-of-the-art baseline approaches.
- Abstract(参考訳): 深層強化学習(DRL)は、複雑な自律運転シナリオでナビゲーションを学ぶための有望な方法を提供する。
しかし、著しく異なる結果を示す微妙な手がかりを特定することは、人間の環境で動く自律システムを設計する上でのオープンな問題である。
本研究では,強化学習フレームワークにおいて,潜在状態を明示的に推論し,空間的・時間的関係をエンコードすることで,この問題に対処できることを示す。
我々は,強化学習者と教師付き学習者を組み合わせた枠組みを用いて,他のドライバの潜在状態に関する事前知識を符号化する。
さらに,グラフニューラルネットワーク(gnns)を用いて,車両間の影響をモデル化する。
提案手法は,最先端のベースラインアプローチと比較して,T区間のナビゲーションにおける性能を著しく向上させる。
関連論文リスト
- End-to-End Steering for Autonomous Vehicles via Conditional Imitation Co-Learning [1.5020330976600735]
この課題に対処するために、条件付き模倣コラーニング(CIC)アプローチを導入する。
そこで我々は, 回帰と分類のギャップを埋めるために, 分類-回帰ハイブリッド損失を用いて, 操舵回帰問題を分類として提案する。
本モデルは,CIL法と比較して,見えない環境下での自律走行の成功率を平均62%向上させることを実証した。
論文 参考訳(メタデータ) (2024-11-25T06:37:48Z) - Deep Attention Driven Reinforcement Learning (DAD-RL) for Autonomous Decision-Making in Dynamic Environment [2.3575550107698016]
AV中心の時間的注意符号化(STAE)機構を導入し,周囲の車両との動的相互作用を学習する。
マップとルートのコンテキストを理解するために,コンテキストマップの抽出にコンテキストエンコーダを用いる。
得られたモデルは、Soft Actor Critic (SAC)アルゴリズムを用いて訓練される。
論文 参考訳(メタデータ) (2024-07-12T02:34:44Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - GINK: Graph-based Interaction-aware Kinodynamic Planning via
Reinforcement Learning for Autonomous Driving [10.782043595405831]
都市部などの構造環境下での自律運転に深部強化学習(D)を適用するには,多くの課題がある。
本稿では,グラフに基づく意図表現と動的計画のための強化学習を効果的に組み合わせた新しいフレームワークを提案する。
この実験は,既存のベースラインと比較して,我々のアプローチの最先端性能を示すものである。
論文 参考訳(メタデータ) (2022-06-03T10:37:25Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
経路点と低次元視覚表現を用いた最適制御ポリシーを学習するための深層強化学習フレームワークを提案する。
スクラッチから訓練されたエージェントは、車線追従のタスクを学習し、区間間を走り回り、密集した交通状況でも他のアクターや信号機の前で立ち止まることを実証する。
論文 参考訳(メタデータ) (2021-01-15T05:21:25Z) - Interpretable End-to-end Urban Autonomous Driving with Latent Deep
Reinforcement Learning [32.97789225998642]
本稿では,エンドツーエンド自動運転のための解釈可能な深部強化学習手法を提案する。
逐次潜在環境モデルを導入し、強化学習プロセスと共同で学習する。
本手法は,自動車が運転環境にどう影響するかを,よりよく説明することができる。
論文 参考訳(メタデータ) (2020-01-23T18:36:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。