論文の概要: Time Synchronized State Estimation for Incompletely Observed
Distribution Systems Using Deep Learning Considering Realistic Measurement
Noise
- arxiv url: http://arxiv.org/abs/2011.04272v2
- Date: Tue, 9 Feb 2021 19:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 01:45:19.270622
- Title: Time Synchronized State Estimation for Incompletely Observed
Distribution Systems Using Deep Learning Considering Realistic Measurement
Noise
- Title(参考訳): 実測ノイズを考慮したディープラーニングを用いた不完全観測分布系の時間同期状態推定
- Authors: Behrouz Azimian, Reetam Sen Biswas, Anamitra Pal, Lang Tong
- Abstract要約: 時間同期状態推定は、リアルタイム観測性に制限があるため、分散システムの課題である。
本稿では,不均衡な3相分布系の状態推定を行うために,ディープラーニング(DL)に基づくアプローチを定式化する。
- 参考スコア(独自算出の注目度): 1.7587442088965226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-synchronized state estimation is a challenge for distribution systems
because of limited real-time observability. This paper addresses this challenge
by formulating a deep learning (DL)-based approach to perform unbalanced
three-phase distribution system state estimation (DSSE). Initially, a
data-driven approach for judicious measurement selection to facilitate reliable
state estimation is provided. Then, a deep neural network (DNN) is trained to
perform DSSE for systems that are incompletely observed by synchrophasor
measurement devices (SMDs). Robustness of the proposed methodology is
demonstrated by considering realistic measurement error models for SMDs. A
comparative study of the DNN-based DSSE with classical linear state estimation
indicates that the DL-based approach gives better accuracy with a significantly
smaller number of SMDs.
- Abstract(参考訳): 時間同期状態推定は、リアルタイム観測性に制限があるため、分散システムの課題である。
本稿では,非平衡分布系状態推定(dsse)を行うための深層学習(dl)に基づく手法を提案する。
はじめに、信頼できる状態推定を容易にするために、公平な測定選択のためのデータ駆動アプローチを提供する。
次に、深部ニューラルネットワーク(DNN)をトレーニングし、シンクロファサー測定装置(SMD)によって不完全な観測を行うシステムに対してDSSEを実行する。
提案手法のロバスト性は,smdにおける実測誤差モデルを用いて検証した。
DNNに基づくDSSEと古典的線形状態推定との比較研究は、DLに基づくアプローチは、非常に少ない数のSMDでより良い精度が得られることを示している。
関連論文リスト
- Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning [57.04370580292727]
モデルフリープロセスの圧縮測定(BSCM)によるデータ駆動ベイズ状態の推定。
時間的測定ベクトルの次元は、推定される時間的状態ベクトルの次元よりも低い。
既存の2つの教師なし学習ベースのデータ駆動手法は、モデルフリープロセスのBSCM問題に対処できない。
半教師付き学習に基づくDANSE手法を開発し,その手法をSemiDANSEと呼ぶ。
論文 参考訳(メタデータ) (2024-07-10T05:03:48Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Analytical Verification of Performance of Deep Neural Network Based
Time-Synchronized Distribution System State Estimation [0.18726646412385334]
近年,ディープニューラルネットワーク(DNN)を用いた時間同期状態推定器の成功例が報告されている。
本稿では,入力測定における摂動関数として,その状態推定器の性能に関する解析的バウンダリを提供する。
論文 参考訳(メタデータ) (2023-11-12T22:01:34Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Unmatched uncertainty mitigation through neural network supported model
predictive control [7.036452261968766]
学習ベースMPC(LBMPC)の基本最適化問題において,深層ニューラルネットワーク(DNN)をオラクルとして利用する。
我々は、ニューラルネットワークの最後のレイヤの重みをリアルタイムで更新するデュアル・タイムスケール適応機構を採用している。
その結果,提案手法はリアルタイムに実装可能であり,LBMPCの理論的保証を担っていることがわかった。
論文 参考訳(メタデータ) (2023-04-22T04:49:48Z) - Efficient Deep Unfolding for SISO-OFDM Channel Estimation [0.0]
スパースリカバリ技術を用いてSISO-OFDMチャネル推定を行うことができる。
本稿では,この制約を緩和するために,展開ニューラルネットワークを用いる。
教師なしのオンライン学習は、推定性能を高めるためにシステムの欠陥を学習することができる。
論文 参考訳(メタデータ) (2022-10-11T11:29:54Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
決定論的不確実性法(DUM)は,分布外データの検出において高い性能を達成する。
DUMが十分に校正されており、現実のアプリケーションにシームレスにスケールできるかどうかは不明だ。
論文 参考訳(メタデータ) (2021-07-01T17:59:07Z) - State and Topology Estimation for Unobservable Distribution Systems
using Deep Neural Networks [8.673621107750652]
リアルタイムオブザーバビリティが制限されているため,再構成可能な分散ネットワークの時間同期状態推定は困難である。
本論文では,深層学習(DL)に基づくトポロジー同定(TI)と不均衡な3相分布系状態推定(DSSE)の手法を定式化する。
2つのディープニューラルネットワーク(DNN)は、同期失調症測定装置(SMD)によって不完全に観察されるシステムに対して、TIおよびDSSEを実装するために順次動作するように訓練されます。
論文 参考訳(メタデータ) (2021-04-15T02:46:50Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。