Robustness of Community Detection to Random Geometric Perturbations
- URL: http://arxiv.org/abs/2011.04298v1
- Date: Mon, 9 Nov 2020 10:15:40 GMT
- Title: Robustness of Community Detection to Random Geometric Perturbations
- Authors: Sandrine Peche and Vianney Perchet
- Abstract summary: We consider the block model where connection between vertices is perturbed by some latent (and unobserved) random geometric graph.
The objective is to prove that spectral methods are robust to this type of noise, even if they are agnostic to the presence (or not) of the random graph.
- Score: 16.575947847660778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the stochastic block model where connection between vertices is
perturbed by some latent (and unobserved) random geometric graph. The objective
is to prove that spectral methods are robust to this type of noise, even if
they are agnostic to the presence (or not) of the random graph. We provide
explicit regimes where the second eigenvector of the adjacency matrix is highly
correlated to the true community vector (and therefore when weak/exact recovery
is possible). This is possible thanks to a detailed analysis of the spectrum of
the latent random graph, of its own interest.
Related papers
- Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
arXiv Detail & Related papers (2023-06-05T00:01:17Z) - Violation of Bell's inequalities in uniform random graphs [0.0]
We demonstrate that quantum correlations can emerge from the statistical correlations of random discrete models.
We investigate the correlations between the number of neighbors(degree) for pairs of vertices in Erdos-Renyi uniform random graphs.
arXiv Detail & Related papers (2023-05-04T12:46:26Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Partial recovery and weak consistency in the non-uniform hypergraph Stochastic Block Model [6.681901523019242]
We consider the community detection problem in random hypergraphs under the nonuniform hypergraph block model (HSBM)
We provide a spectral algorithm that outputs a partition with at least a $gamma$ fraction of the vertices classified correctly, where $gammain depends on the signal-to-noise ratio (SNR) of the model.
The theoretical analysis of our algorithm relies on the concentration and regularization of the adjacency matrix for non-uniform random hypergraphs, which can be of independent interest.
arXiv Detail & Related papers (2021-12-22T05:38:33Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
This paper shows that graph spectral embedding using the random walk Laplacian produces vector representations which are completely corrected for node degree.
In the special case of a degree-corrected block model, the embedding concentrates about K distinct points, representing communities.
arXiv Detail & Related papers (2021-05-03T16:36:27Z) - Random Geometric Graphs on Euclidean Balls [2.28438857884398]
We consider a latent space model for random graphs where a node $i$ is associated to a random latent point $X_i$ on the Euclidean unit ball.
For certain link functions, the model considered here generates graphs with degree distribution that have tails with a power-law-type distribution.
arXiv Detail & Related papers (2020-10-26T17:21:57Z) - Testing correlation of unlabeled random graphs [18.08210501570919]
We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes.
This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated.
Under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null.
arXiv Detail & Related papers (2020-08-23T19:19:45Z) - Strong Consistency, Graph Laplacians, and the Stochastic Block Model [1.2891210250935143]
We study the performance of classical two-step spectral clustering via the graph Laplacian to learn the block model.
We prove that spectral clustering is able to achieve exact recovery of the planted community structure under conditions that match the information-theoretic limits.
arXiv Detail & Related papers (2020-04-21T07:16:46Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.